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Abstract—The fundamental issue of how to calculate the false positive probability of widely used BloomFilters (BF), fromwhich the

conventional wisdom is to derive the optimal value of k, remains elusive. Since Bloom gave the false positive formula in 1970, in 2008,

Bose et al. pointed out that Bloom’s formula is flawed; and in 2010, Christensen et al. pointed out that Bose’s formula is also flawed and

gave another formula. Although Christensen’s formula is perfectly accurate, it is time-consuming and impossible to calculate the optimal

value of k. Based on the following observation: for a BFwithm bits and n elements, if and only if its entropy is the largest, its false positive

probability is the smallest, we propose the first approach to calculating the optimal kwithout any false positive formula. Furthermore, we

propose a new andmore accurate upper bound for the false positive probability. When the size of a BloomFilter becomes infinitely large,

our upper bound turns equal to the lower bound, which becomes Bloom’s formula and deepens our understanding towards it. Besides,

we derive the bounds of correct rate of Counting BloomFilters (CBFs) by applying our proposed formulas about BFs to them.

Index Terms—Bloom filter, false positive, information entropy, compression, upper bound, lower bound, counting Bloom Filter

Ç

1 INTRODUCTION

1.1 Motivation

ABloom Filter (BF) is a compact data structure used for
quickly checking whether an element belongs to a set

or not [1]. Given a set S of n elements, we create a bit array
A of length m as follows. First, we initialize each bit of A to
0, then for each element x 2 S, we use k hash functions to
compute k hash values: h1ðxÞ; h2ðxÞ; � � � ; hkðxÞ where each
hash value is in the range ½1;m�. Second, for each 14i4k,

we let A½hiðxÞ� ¼ 1. The resulting bit array A is called the BF
for set S. To query whether y 2 S, we first use the same k
hash functions to compute k hash values: h1ðyÞ; h2ðyÞ;
� � � ; hkðyÞ. Second, we check whether the corresponding k
bits in A are all 1s (i.e., whether A½h1ðyÞ� ^A½h2ðyÞ� ^
� � � ; A½hkðyÞ� ¼ 1 holds); if yes, then y 2 S may probably
hold and we can further check whether y 2 S; if no, then y 2
S definitely does not hold. The cases that the BF shows that
y 2 S may hold but actually y =2 S are called false positives
(FP). The FP probability f can be calculated from n, k, and
m. Thus, given a set of n elements and the required FP prob-
ability f , we can calculate the relationship between k andm.
Based on the calculated relationship between k and m, we
can properly trade off between space and speed: smaller m
means smaller space, and smaller k means the smaller num-
ber of hash function calculations. In typical BF applications,
as m is determined by the memory budget for the BF, with
known values of n and f , we calculate the optimal value for
the only unknown parameter k.

As set membership query is a fundamental operation in
many applications [2], and BFs have the advantages of small
memory consumption, fast query speed, and no false nega-
tives, BFs have been widely used in networks, databases,
data mining and analysis, and machine learning, etc: In
terms of networks, BFs have applications in web caching [3],
[4], [5], sensor networks [6], [7], [8], data center networks [9],
[10], [11], cloud computing [12], [13], [14], and more [15],
[16], [17]. In terms of databases, BFs have applications in
key-value stores [18], [19], [20], [21], [22], [23], privacy-pre-
serving record linkage [24], [25], [26], [27], [28], [29], block
chain [30], [31], [32], and more [33], [34], [35]. In addition to
the above, BFs also have applications that cannot be underes-
timated in data mining and analysis [36], [37], [38], [39], [40],
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[41], [42], and machine learning [43], [44], [45], [46], [47].
Most applications with set membership query can poten-
tially be optimized using BFs [48].

Although BFs have been widely used in many applica-
tions, the fundamental issue of how to calculate FP probability
remains elusive. Properly calculating the FP probability of BF
is critical because it is used to calculate the optimal value of
the important parameter k, the number of hash functions. In
[1], Bloom gave a formula for calculating the FP probability
with known parameters n, k, and m. Based on Bloom’s for-
mula, we can also easily compute the optimal value of the
parameter kwhenm and n are known. This formula has been
believed to be correct until 2008 when Prosenjit Bose et al.
pointed out that Bloom’s formula is flawed and gave a new
FP formula [49]. Interestingly, two years later, Ken Christen-
sen et al. pointed out that Bose’s formula is also flawed and
gave a new FP formula [50]. So far, it is believed that
Christensen’s formula is perfectly accurate. However, Both
Bose’s and Christensen’s FP formulas are too complicated to
calculate the optimal value of k fromgiven values of n andm.

1.2 Main Contributions

While the conventional wisdom is to derive the optimal
value of BF parameter k from the FP probability, in this
paper, we propose the first approach to calculating the opti-
mal kwithout any FP formula. We first observe that for a BF
with m bits and n elements, if and only if its entropy is the
largest, its false positive probability is the smallest, accord-
ing to information entropy theory. Based on this observa-
tion, our approach is to derive a formula for calculating the
optimal k by letting the entropy equal to 1. We also propose
another method to calculate FP probability by deriving the
left and right limit expressions of FP probability. We prove
that when m goes to infinity, the left and right limits are the
same, which is essentially the FP probability. Interestingly,
our derived FP formula is the same as Bloom’s formula in
[1]. This deepens our understanding of Bloom’s formula: it
is perfectly accurate when m is infinitely large, and it is
practically accurate whenm is sufficiently large.

In summary, we make three key contributions in this
paper. First, we propose an information theoretical approach
to calculating the optimal value of BF parameter k without
calculating FP probability. Second, we propose a new upper
bound which is much more accurate than state-of-the-art.
When m is infinitely large, our upper bound becomes the
same as the lower bound. This result formally proves that
Bloom’s formula is practically accurate when m is suffi-
ciently large. Third, we conducted experiments to validate
our findings. In particular, we show that the error of Bloom’s
formula is negligibly small when m is large. Furthermore,
we release our source code of Bloom Filters at GitHub [51].
The rest of this paper proceeds as follows. In Section 2, we
introduce the evolutionary on FP probability. In Section 3,
we show the derivation of the optimal number of hash func-
tions using the information entropy theory. In Section 4, we
present a new upper bound of the false positive probability
of Bloom Filters. In Section 5, we derive the bounds of correct
rate of Counting Bloom Filters (CBFs) [3] through our pro-
posed formulas about Bloom Filters. In Section 6, we conduct
experiments to evaluate the error of Bloom Filters. We con-
clude the paper in Section 7.

2 PRIOR ART ON BF FALSE POSITIVES

In this section, we review the prior art on calculating the
false positive probability of Bloom Filters. Table 1 summa-
rizes the notations used in this paper.

2.1 Bloom’s False Positive Formula

In 1970, Bloom calculated the false positive probability of a
Bloom Filter as follows [1]. Given a set S of elements, let n be
the number of elements in S, k be the number of hash func-
tions, and m be the number of bits in the Bloom Filter A con-
structed from set S. In querying an element x, the false
positive happens when the Bloom Filter reports that x 2 S
(i.e., A½hiðxÞ� ¼ 1 holds for each 14i4k), but actually x =2 S.
Consider an arbitrary bit A½b� in A. For any element in S and
any hash function hi (14i4k), the probability that this ele-
ment is not hashed to bitA½b� by hi is 1� 1=m. As S has n ele-
ments and each element is hashed k times, the probability of
A½b� ¼ 0 is p0:

p0 ¼ 1� 1

m

� �kn

(1)

Thus, the probability of A½b� ¼ 1 is 1� ð1� 1=mÞkn. For any
element x =2 S, the probability that the false positive hap-
pens for x, i.e., the probability of A½h1ðyÞ� ^A½h2ðyÞ� ^
� � � ; A½hkðyÞ� ¼ 1, is calculated as follows:

fbloom ¼ 1� 1� 1

m

� �kn
 !k

(2)

which can be approximated by ð1� e
�nk
m Þk.

2.2 Bose’s Derivation

In 2008, Bose et al. pointed out that the last step in Bloom’s
derivation is flawed because for any element x =2 S, the k
events A½h1ðxÞ� ¼ 1; A½h2ðxÞ� ¼ 1; � � � ; A½hkðxÞ� ¼ 1 are not
actually independent [49]. Although for each bit A½hiðxÞ�
(14i4k), after inserting n elements into array A, the proba-
bility of A½hiðxÞ� ¼ 1 is 1� ð1� 1=mÞkn, for the probability of

A½h1ðyÞ� ^A½h2ðyÞ� ^ � � � ; A½hkðyÞ� ¼ 1 to be ð1�ð1�1=mÞknÞk,
the k eventsA½h1ðxÞ� ¼ 1; A½h2ðxÞ� ¼ 1; � � � ; A½hkðxÞ� ¼ 1 need
to be independent. Observing the dependency of the k events
A½h1ðxÞ� ¼ 1; A½h2ðxÞ� ¼ 1; � � � ; A½hkðxÞ� ¼ 1, Bose et al. derive

TABLE 1
Symbols Frequently Used in This Paper

Symbol Description

S Set of elements
m BF size
n Number of elements in S
k Number of hash functions
k� Optimal number of hash functions
f False positive probability
fbloom False positive probability calculated by Bloom
fbose False positive probability calculated by Bose
fchrist False positive probability calculated by Christensen
ftrue True false positive probability of BF
FP false positive
BF Bloom Filter
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the following false positive formula:

fbose ¼ 1

mk nþ1ð Þ
Xm
i¼1

iki!
m

i

� �
kn
i

� �
(3)

where

kn
i

� �
¼ 1

i!

Xi
j¼0

�1ð Þi�j i

j

� �
jkn (4)

Bose et al. derived asymptotically closed forms for the
upper and lower bounds of the above formula:

fbloom < fbose4fbloom � 1þO k

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnm� k ln p

m

r ! !
(5)

where p ¼ 1� p0 ¼ 1� ð1� 1
mÞkn. These bounds hold under

the condition that

k

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnm� k ln p

m

r
4c (6)

for some constant c < 1. Bose et al. further showed that for
k52, fbose is strictly larger than fbloom, and the lower bound
converges to fbloom whenm becomes infinitely large.

2.3 Christensen’s Derivation

In 2010, Christensen et al. pointed out that Bose’s formula
has a mistake that the term ð�1Þj should be ð�1Þi�j, but the
lower and upper bounds in Eq. (5) are correct. Christensen
et al. derived the finally correct false positive formula for
Bloom Filters as follows:

fchrist ¼ m!

mkðnþ1Þ
Xm
i¼1

Xi
j¼1

ð�1Þi�j jknik

ðm� iÞ!j!ði� jÞ! (7)

Although Christensen’s formula is perfectly accurate, it
is not much useful in practice. First, given the Bloom Filter
parameters n,m, and f , it is difficult to calculate the optimal
k value as Christensen’s formula does not give a closed
form expression for calculating the optimal k. Second, given
the Bloom Filter parameters n, m, and k, the algorithm by
Christensen et al. takes OðknmÞ time to calculate the false
positive probability f , which is time-consuming.

2.4 Grandi’s Derivation

In 2018, Grandi proposed the g-transform [52] approach to
analyze the false positive probability [53], and further
derived the false positive formula as follows:

fgrandi ¼
Xm
x¼0

x

m

� �k m
x

� �Xx
j¼0

ð�1Þj x
j

� �
x� j

m

� �kn

(8)

where x represents the number of bits set to 1 in the Bloom
Filter.

3 COMPUTING THE OPTIMAL K

Traditionally, the optimal number of hash functions is
derived through finding the extrema of the asymptotic for-
mula of fbloom given in Eq. (2) as follows:

k�bloom ¼ m

n
ln 2 (9)

However, as we have discussed, the underlying formula
for FP probability is not fully correct. In this section, we first
present the important theorems that correlate information
entropy and the false positive rate of Bloom Filters. Then
we propose a method of deriving the optimal value of k by
minimizing the FP probability given the value of BF size m
and number of inserted elements n.

3.1 Information Entropy Basis

Information Entropy. In information theory, information entropy
is used to measure the uncertainty of a random variable. In
this paper, we use Shannon entropy [54], which measures
the value of the information contained in a variable.
Entropy is typically measured in bits, nats, or bans [55].
For a variable with s events with the probabilities of p1, p2,
� � � , ps. The information entropy E is defined as:

E ¼ �
Xs
i¼1

pilog2
1

pi
(10)

Property of Information Entropy: For any variable or message,
if its information entropy is not at the maximum, it can be
compressed without information losses. For a random vari-
able, the larger the uncertainty is, the bigger the information
entropy is. Suppose an m-bit string variable is compressed
to m0-bit string variable without loss of information, the
entropy E of the Bloom Filter remains the same. However,
the average information containing in each bit, which is e ¼
E=m will increase to e0 ¼ E=m0. Then, we have me ¼ m0e0.
According to the information entropy formula (Eq. 10), we
can obtain the information entropy e0 of one bit of a BF as
follows, where p0 is defined in Eq. (1).

e0 ¼ � p0log 2p
0 þ ð1� p0Þlog 2ð1� p0Þð Þ (11)

We illustrate the relationship between entropy e0 and p0

in Fig. 1. We can observe that the entropy of an m-bit
sequence reaches the maximum value of 1 when p0 ¼ 0:5,
i.e., the probability of each bit in the BF being 1 (or 0) is 50%.

3.2 An Important Global Assumption

What must be said before our formal analysis is that we
assume after compression without information loss, a
Bloom Filter is still a Bloom Filter. In other words, we
assume the properties of query and insertion of the Bloom
Filter should be persisted. Of course that’s a very strong
assumption, and we have not given a rigorous proof. How-
ever, since the results of our analysis based on this assump-
tion are in perfect agreement with our experiments, we
state it here as an open question.

3.3 Relation Between False Positive Probability and
Information Entropy

We now show the relation between the false positive proba-
bility and information entropy. We first present a lemma
and some definitions.
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Lemma 1. Given a BF, suppose n and k keep unchanged, when
m becomes larger, the FP probability gets smaller.

Proof. When n and k are fixed, for larger m, the probability
of each bit being 1 in the BF becomes smaller, i.e., p0

becomes smaller; thus, the FP probability gets smaller. tu
Definition 1. Bloom Filter variable. The false positive rate of

Bloom Filters is determined by m, n, and k. For different n ele-
ments, the m-bit string varies. Thus, when the values of m, n,
k are given, them-bit string is a random variable (similar but
slightly different from the mathematical definition of random
variable).1 When the n elements are given, the m-bit string is a
random variable instance. Therefore, when the values ofm, n, k
are given, we call it a Bloom Filter Variable (BFR). Since it is a
random variable, we can compute its information entropy.

Definition 2. Equivalent Bloom Filter variables. Given two
Bloom Filters variables v1 and v2, for the same n elements, there
are a pair of BFR instances. Given a set with n elements, if these
pairs of BFR instances always report the same result: true or
false for any input element, we say v1 and v2 are equivalent.

Theorem 1. Given a Bloom Filter variable v1 with parameters
m, n, and k, if its information entropy is not at the maximum,
there must exist a smaller equivalent Bloom Filter variable v2
with parametersm0, n and k, wherem0 < m.

Proof. For v1, the parameters are m, n, k. Suppose its k hash
functions are h1ð�Þ; h2ð�Þ; . . . ; hkð�Þ. Since the assumption is
that the information entropy of v1 is not at the maximum,
according to the property of information entropy, v1 can
be compressed without information loss. After compres-
sion, suppose the new random variable has a length of
m0ðm0 < mÞ, we name it v2. Note that during the com-
pression, the information value m � e keeps unchanged;
thus, the length of the compressed message has a mini-
mum value. Here v1 and v2 are two variables consisting

of bits, and we can treat them as two integer variables.
We use Inðv1Þ and Inðv2Þ to represent the integer value of
v1 and v2. Furthermore, we use jInðv1Þj represents the
length of v1, then we have jInðv1Þj ¼ m, jInðv2Þj ¼ m0.
Because we compress v1 and get v2, this can be regarded
as a function gð�Þ. In other words, gðInðv1ÞÞ ¼ Inðv2Þ. We
can also obtain v1 by equation Inðv1Þ ¼ g�1ðInðv2ÞÞ.

At this stage, we consider the new Bloom Filter vari-
able v2, the parameters are m0, n, and k. Note that we use
k different hash functions, and the k hash functions are

g�1ðInðv2ÞÞ � h1ðyÞ 	 ðjg�1ðInðv2ÞÞj � h1ðyÞ � 1Þ;
g�1ðInðv2ÞÞ � h2ðyÞ 	 ðjg�1ðInðv2ÞÞj � h2ðyÞ � 1Þ;
. . .

g�1ðInðv2ÞÞ � hkðyÞ 	 ðjg�1ðInðv2ÞÞj � hkðyÞ � 1Þ (12)

where ‘�’ represents the left shift operator, and ‘	’ rep-
resents the right shift operator.2

Given an input element y, we can compute the above k
values only using v2 and hið�Þ without v1. Then we need
to prove that for any incoming element y, v2 reports the
same k-bit value. With formula 12, we use equation v1 ¼
g�1ðInðv2ÞÞ and m ¼ jg�1ðInðv2ÞÞj. These k hash functions
are simplified as

v1 � h1ðyÞ 	 ðm� h1ðyÞ � 1Þ;
v1 � h2ðyÞ 	 ðm� h2ðyÞ � 1Þ;
. . .

v1 � hkðyÞ 	 ðm� hkðyÞ � 1Þ (13)

Here 14i4k and 04hiðyÞ4m� 1. Here v1 � hiðyÞ 	
ðm� hiðyÞ � 1Þ actually means the value of hiðyÞth bit of
v1. This is the same as the k hash functions as v1. There-
fore, v1 and v2 are equivalent. tu

Theorem 2. Given a Bloom Filter variable, if and only if its
information entropy is at the maximum, its FP probability is at
the minimum.

Proof. First, we prove that if the FP probability is at themini-
mum, then its average information entropy Eq. (11) must
be at the maximum. Given a Bloom Filter variable v1 with
parameters m, n, k. Since the assumption is that the aver-
age information entropy of v1 is not at the maximum,
according to Theorem I, there exists a smaller Bloom Filter
variable v2 with parameters m0, n, k. Since v2 and v1 are
equivalent, their FP probabilities are the same, we name it
f . At this stage, we enlarge the size of v2 a little fromm0 to
m00, where m0 < m00 < m. According to Lemma 1, we
know the FP probability of v2 becomes smaller than f . This
means that for v1, there exists a BF variable with a smaller
size and a smaller FP probability. Therefore, the FP proba-
bility of v1 is not at the minimum. This means that if its

Fig. 1. Information entropy of a BF.

1. Although we still use the phrase “random variable” for conve-
nience, we want to point out that it is indeed a non-standard usage of
the term “random variable.” We want to say thatm-bit strong is indeed
a measurable function, mapping from the total sample space to Rm:
Random variable in mathematics is a term whose mapping value is
restricted to C.

2. The symbols ‘�’ and ‘	’ shift all the binary bits of a number to
the left/right by several bits, respectively. On the premise that the num-
ber does not overflow, shifting left by x bits is equivalent to multiplying
by 2 to the power of x, and shifting right by x bits is equivalent to divid-
ing by 2 to the power of x. For example, shifting the integer 6 (‘0110’ in
binary) to the left by 1 bit is equivalent to the integer 12 (‘1100’ in
binary), and shifting the integer 6 to the right by 1 bit is equivalent to
the integer 3 (‘0011’ in binary).
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average information entropy is not at the maximum, then
the FP probability is definitely not at the minimum. The
contrapositive is that if the FP probability is at the mini-
mum, then its average information entropy must be at the
maximum.

Second, we prove that if its average information
entropy is at the maximum, the FP probability is at the
minimum. Given a Bloom Filter variable v1 with parame-
ters m, n, k. Since the assumption is that the FP probabil-
ity of v1 is not at the maximum, there exists an optimal
Bloom Filter variable v0 with parameters m, n, k0, where
k0 6¼ k, the average information entropy of v0 is at the
maximum. According to Eq. 11 and Fig. 1, the p0 of v0 is
0.5 whereas the p0 of v1 is not because they have different
value of k. Therefore, the average information entropy of
BF1 is not at the maximum. This means if the FP probabil-
ity is not at the minimum, its average information
entropy must be not at the maximum. The contrapositive
is that if its average information entropy is at the maxi-
mum, the FP probability is at the minimum. tu

3.4 Computing the Optimal k

According to Theorem 2, when the average information
entropy of the Bloom Filter variable is at the maximum, the
FP probability is at the minimum. Recalling the definition of
p0 in Eq. (1), one can use this interpretation to find k�, i.e.,
the optimal number of hash functions. From Fig. 1, we
know that when p0 is 0.5, E reaches the maximum value 1.
By setting the value of p0 to 0.5, we have

p0 ¼ 1� 1

m

� �k�n
¼ 0:5 (14)

Further, we have:

k� ¼ � ln 2

n
= ln 1� 1

m

� �
(15)

This formula is very close to the formula of k� obtained by
Bloom. When x is very small, lnð1þ xÞ 
 x, and therefore
�1= lnð1� 1

mÞ 
 m, resulting the same term as in Eq. (9).

Theorem 3. Given any BF variable, when m and n are fixed, the
FP probability f is a function of k, we represent it fðkÞ. Then
fðkÞ is a well-defined function which has only one minimum
value.

Proof. Given a Bloom Filter variable v1 with parameters m,
n, k1, its entropy is E1. Given another Bloom Filter vari-
able v2 with parameters m, n, k2, its entropy is E2. (1) For
any k1 < k24k�, according to Eqs. (1) and (11) and Fig. 1,
we know p01 < p0240:5. We compress v1 to v3 with param-
eters m3, n, k1. To make v3’s entropy equal to E2, m3

should be mE1=E2. In this case, the entropy of v3 is equal
to that of v2. When the entropy of BF variables is less than
0.5, the same entropy leads to the same p0. In other words,
p03 ¼ p02. Because v2 has more hash functions (k2 > k1),
the FP probability of v2 is smaller than that of v3. While v3
and v1 have the same FP probability, therefore, the FP
probability of v2 is smaller than that of v1. In other words,
for any k ðk < k�Þ increasing, the FP probability of BFs
decreases. (2) For any k�4k1 < k2, according to Eqs. (1),

(11), and Fig. 1, we know p01 > p0250:5. Using the similar
derivation, we can derive that the FP probability of v2 is
larger than that of v1. According to the above two cases,
we know that given any BF variable, when m and n are
fixed, the FP probability f is a function of k, we represent
it fðkÞ. So fðkÞ is a well-defined function, which has a
unique minimum value. tu

4 ASYMPTOTIC FORM OF THE FP PROBABILITY

In this section, we derive a new approach to computing the
asymptotic form for the FP probability of BFs. The new deri-
vation is based on partitioned Bloom Filters (pBF) that are used
frequently to carry out parallel queries. Its underpinning
principle is simple: the BF is divided into k even partitions,
and each hash function only acts on one of the partitions,
respectively. The probability that one bit of the BF array
remains 0 after inserting n elements in the BF becomes the
following as now each hashmaps into m

k separate bits.

p0partition ¼ 1� k

m

� �n

(16)

It is intuitive that the FP probability of partitioned BF is a
little bigger than that of BF. Unfortunately, there is no strict
proof. Here we show one proof method, which is based on
the following Lemma.

Lemma 2. Form > 1; k > 1; n > 1;m > k,

1� k

m

� �n

< 1� 1

m

� �kn

(17)

Proof. Directly application of Bernoulli inequality. tu
The above lemma shows that p0partition < p0true or equiva-

lently 1� p0partition > 1� p0true. Thus, we know that with the
same parameters, the FP probability of the pBF will be
larger than that of the standard BF ftrue, i.e., fpartition > ftrue.
In addition, Bose’s bounds in Eq. (5) state that the precise
value of FP probability for a BF ftrue is larger than fbloom, i.e.,
ftrue > fbloom. Therefore, we have the following upper and
lower bounds:

fpartition > ftrue > fbloom (18)

For a partitioned BF, the probability that one bit of the
array is still 0 p0 is shown in Eq. (16). Different from stan-
dard Bloom Filters, for a partitioned Bloom Filter, the event
Eðh1 ¼ 1Þ; Eðh2 ¼ 1Þ; Eðh3 ¼ 1Þ; :::; Eðhi�1 ¼ 1Þ is indepen-
dent of the event Eðhi�1 ¼ 1Þ, where Eðhi�1 ¼ 1Þmeans that
the event that the position of hi�1ðxÞ is 1 because each hash
function is responsible for one partition, and has no impact
on each other. Therefore, we have

fpartition ¼ ð1� p0partitionÞk ¼ 1� 1� k

m

� �n� �k

(19)

Then, the Eq. (18) becomes

1� 1� k

m

� �n� �k

> ftrue > 1� 1� 1

m

� �nk
 !k

(20)
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Then, we use the well known limit formula:

lim
x!1 1� 1

x

� ��x

¼ e (21)

Asymptotically, whenm becomes large, we already know
that fbloom converges to the term in Eq. (2). Nevertheless, the
upper bound has also an asymptotic behaviour as the follow-
ing, which is the same term as the lower bound limit.

lim
m!1 1� 1� 1

m

� �nk
 !k

¼ 1� e�nk=m
� �k

(22)

Through the Sandwich Theorem (also known as squeeze
theorem) we obtain the following equation, which is simi-
larly to Christensen and Bose:

lim
m!1 ftrue ¼ 1� e�nk=m

� �k
(23)

This means that whenm is large, the Bloom’s formula can
be usedwith negligible error. However, we still need to eval-
uate what meansm being large. We will do this by comparing
the two bounds we have in hand: the one from Bose and the
one we derived in this paper. We show in Fig. 2 that the two
upper bounds along with the lower bound obtained for k ¼
7 and m ¼ 10n as a function of n, the number of elements
inserted in the BF. As can be seen, the upper bound derived
in this paper and the lower bound fbloom converge relatively
fast for n ¼ 9, while the upper bound derived by Bose has a
much slower convergence. We can see this better by looking
at the behavior of the bounds error ratio b, defined as b ¼
upper bound�lower bound

lower bound , for the two bounds in Fig. 3.
As can be seen, the gap between our derived upper

bound and fbloom is decreasing polynomially at a constant
speed, while Bose’s bound has a lower speed of conver-
gence. In order to extend this observation, we show in Fig. 4
the evolution of the bounds error ratio for a BF with m ¼
10000, n ¼ 1000 and varying k.

As expected, error involved with using fbloom increases
with the number of hash functions k increases. However, it
can be seen that the convergence behavior of the bounds
derived in this paper is much better than the one obtained
by Bose.

5 CORRECT RATE OF COUNTING BLOOM FILTERS

The Counting Bloom Filter (CBF) [3], one widely used variant
of standard Bloom Filter, replaces each bit with one counter,
supporting estimating the frequency of each element in amul-
tiset. Specifically, given a multiset S of n distinct elements
with their corresponding frequencies, we create a counter
arrayA of lengthm as follows. First, we initialize each counter
ofA to 0, then for each element x 2 S, we use k hash functions
to compute k hash values: h1ðxÞ; h2ðxÞ; . . . ; hkðxÞ where each
hash value is in the range ½1;m�. Second, for each 14i4k, we
letA½hiðxÞ� ¼ A½hiðxÞ� þ 1. Let fx be the frequency of element
x in multiset S. Therefore, the step of A½hiðxÞ� ¼ A½hiðxÞ� þ
1for each14i4k will occur fx times. The resulting counter
array A is called the CBF for multiset S. To query the fre-
quency of an element y in multiset S, we first use the same k
hash functions to compute k hash values: h1ðyÞ; h2ðyÞ; . . . ;
hkðyÞ. Second,we report theminimumvalue of the k counters:
A½h1ðxÞ�; A½h2ðxÞ�; . . . ; A½hkðxÞ� as the estimated frequency of
this element. Obviously, the estimated frequency reported by
the CBF is always larger than or equal to the real frequency
for any element in multiset S. The case that the estimated fre-
quency from the CBF is equal to the real frequency for one ele-
ment is called the correct case. The probability of such case
happening is called the correct rate of the CBF (Cr).

The calculation of the correct rate of CBFs can benefit from
our derivation of the false positive probability of standard
Bloom Filter. In querying an element x, the correct case hap-
pens when there exists at least one hashed counter (among
A½h1ðxÞ�,A½h2ðxÞ�, . . . ,A½hkðxÞ�) that is not hashed by any ele-
ments in multiset S n fx � fxg. The contrapositive is that the
correct case does not happen when all the k hashed counters
are also hashed by some elements in multiset S n fx � fxg.
Consider an arbitrary counter A½b� in A. For any distinct ele-
ment in S n fx � fxg and any hash function hi (14i4k), the
probability that this element is not hashed to counter A½b� by
hi is 1� 1=m. As S n fx � fxg has n� 1 distinct elements and
each distinct element is hashed k times, the probability that
A½b� is not hashed by any element inmultiset S n fx � fxg is pc:

pc ¼ 1� 1

m

� �kðn�1Þ
(24)

Fig. 2. Upper and lower bound for ftrue for k ¼ 7 andm ¼ 10n. Fig. 3. Bounds error ratio for Bose’s bound and the bound derived in this
paper for k ¼ 7 andm ¼ 10n.
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Thus, the probability that A½b� is hashed by some elements
in multiset S n fx � fxg is 1� ð1� 1=mÞkðn�1Þ. The probability
that all the k hashed counters are also hashed by some ele-
ments in multiset S n fx � fxg is answered by ftrue with ele-
ment number of n� 1. We denote ftruejn�1 as ftrue with
element number of n� 1, and get:

1� Cr ¼ ftruejn�1 ) Cr ¼ 1� ftruejn�1 (25)

Applying Eq. (20), we can get the upper and lower bounds
of the Cr of CBFs:

1� 1� 1� k

m

� �n�1
 !k

< Cr < 1� 1� 1� 1

m

� �ðn�1Þk !k

(26)

6 EXPERIMENTAL RESULTS

In this section, we first validate our proposed formula of
optimal k Eq. (15). Second, we compare our proposed upper
bound of the FP probability of BFs Eq. (20) with Bose’s
upper bound Eq. (5). Third, we validate our proposed upper
and lower bounds of the correct rate of CBFs Eq. (26).

6.1 Experimental Setup

Datasets: We use four kinds of datasets: 1) IP Trace Dataset;
2) Data Center Dataset; 3) Network Dataset; 4) Synthetic
Dataset. The details are as follows.

1) IP Trace Dataset: The IP Trace Dataset contains anony-
mized IP traces collected in 2016 by CAIDA [56]. Each item
contains a source IP address (sip, 4 bytes) and a destination
IP address (dip, 4 bytes), 8 bytes in total. We treat each sip-
dip pair as an ID.

2) Data Center Dataset: The Data center dataset [57] con-
tains traces collected from the data centers in [58]. Each
item (4 bytes) represents the ID of the trace.

3) Network Dataset: The network dataset contains users’
posting history on the stack exchange website [59]. Each
item (4 bytes) represents the ID of each user.

4) Synthetic Dataset: We generate a synthetic dataset that
follows the Zipf [60] distribution using Web Polygraph [61],
an open-source performance testing tool. The length of each
item ID is 4 bytes, and the skewness of the dataset is 1.5.

The operations on the above datasets: For BF, we regard each
distinct ID as an element in the aforementioned set. We use
(part of) the first 100/1.5/0.17/0.23M3 distinct IDs to construct
BFs, and query the next 300/4.5/0.51/0.69M distinct IDs to get
the empirical FP probabilities of these BFs. For CBF,we regard
each distinct ID and its occurrence number as a distinct ele-
ment and the corresponding frequency in the aforementioned
multiset, respectively. We use (part of) the first 100/1.5/0.17/
0.23M distinct IDs and their occurrence numbers in the cur-
rent trace to construct CBFs, and query their frequencies to
get the empirical correct rates of these CBFs.

Implementation: We have implemented the standard
Bloom filter in C++. We use the Bob Hash (obtained from
the open source website [62]) with different initial seeds to
implement the hash functions in BFs as recommended by
literature [63]. All the implementation source code is made
publicly available at GitHub4.

6.2 Optimal k Formula Validation

6.2.1 Optimal k versus n

Figs. 5a, 5b, 5c, and 5d plot the empirically and theoretically
optimal kwith different n form = 500M, 7.5M, 0.85M, 1.15M.
Our results show that the optimal k calculated from our new for-
mula follows the empirically optimal k very well, regardless of the
values of n.We observe that the optimal k calculated from our
new formula is very close to the one calculated from the for-
mula obtained by Bloom.

6.2.2 Optimal k versusm

Fig. 6a, 6b, 6c, and 6d plot the empirically and theoretically
optimal k with different m for n = 50M, 0.75M, 0.085M,
0.115M. Our results show that the optimal k calculated from our
new formula follows the empirically optimal k very well, regard-
less of the values of m. We observe that the optimal k calcu-
lated from our new formula is very close to the one
calculated from the formula obtained by Bloom, especially
whenm becomes larger.

6.3 Upper Bound Comparison

6.3.1 Upper Bound versus n

Fig. 7a, 7b, 7c, and 7d plot the empirical results, Bloom’s
theoretical results, Bose’s upper bounds, and our upper
bounds of FP probability with different n form = 500M, 7.5M,
0.85M, 1.15M and k ¼ 6.Our results show that our upper bounds
of FP probability follows the empirical FP probability very well,
regardless of the values of n. We find that all above four results
almost coincide with each other, which demonstrates the
tightness of bounds in Eqs. (5) and (20). To compare upper
bound of Bose and ours more intuitively, in Figs. 8a, 8b, 8c,
and 8d, we plot the bounds error ratios b, defined as b ¼
upper bound�lower bound

lower bound , of these two upper bounds with different
n for m = 500M, 7.5M, 0.85M, 1.15M and k ¼ 6. Our results
show that the bounds error ratio of our upper bound is 23070.7 times
lower than that of Bose’s upper bound on average.Wefind that our
upper bound almost coincides with the lower bound, which

demonstrates the superiority of our upper bound.

Fig. 4. Bounds error ratio for Bose’s bound and the bound derived in this
paper form ¼ 10000, n ¼ 1000 and varying k.

3. They correspond to the 4 datasets mentioned above, respectively.
4. https://github.com/pkufzc/Bloom-Error-TKDE
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6.3.2 Upper Bound versusm

Figs. 9a, 9b, 9c, and 9d plot the empirical results, Bloom’s the-
oretical results, Bose’s upper bounds, and our upper bounds
of FP probability with differentm for n = 50M, 0.75M, 0.085M,
0.115M and k ¼ 6. Our results show that our upper bounds of FP

probability follows the empirical FP probability very well, regardless
of the values of m. Fig. 10a, 10b, 10c, and 10d plot the bounds
error ratios of these two upper bounds with different m for n
= 50M, 0.75M, 0.085M, 0.115M and k ¼ 6.Our results show that
the bounds error ratio of our upper bound is 18838.9 times lower

Fig. 5. Optimal k versus n form = 500M, 7.5M, 0.85M, 1.15M.

Fig. 6. Optimal k versusm for n = 50M, 0.75M, 0.085M, 0.115M.

Fig. 7. FP probability versus n form = 500M, 7.5M, 0.85M, 1.15M and k ¼ 6.

Fig. 8. Bounds error ratio versus n form = 500M, 7.5M, 0.85M, 1.15M and k ¼ 6.
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than that of Bose’s upper bound on average. We find that our
upper bound almost coincides with the lower bound, regard-
less of the values ofm.

6.3.3 Upper Bound versus k

Figs. 11a, 11b, 11c, and 11d plot the empirical results,
Bloom’s theoretical results, Bose’s upper bounds, and our

upper bounds of FP probability with different k for n =
50M, 0.75M, 0.085M, 0.115M and m = 500M, 7.5M, 0.85M,
1.15M. Our results show that our upper bounds of FP probability
follows the empirical FP probability very well, regardless of the
values of k. Figs. 12a, 12b, 12c, and 12d plot the bounds error
ratios of these two upper bounds with different k for n =
50M, 0.75M, 0.085M, 0.115M and m = 500M, 7.5M, 0.85M,
1.15M. Our results show that the bounds error ratio of our upper

Fig. 9. FP probability versusm for n = 50M, 0.75M, 0.085M, 0.115M and k ¼ 6.

Fig. 10. Bounds error ratio versusm for n = 50M, 0.75M, 0.085M, 0.115M and k ¼ 6.

Fig. 11. FP probability versus k for n = 50M, 0.75M, 0.085M, 0.115M andm = 500M, 7.5M, 0.85M, 1.15M.

Fig. 12. Bounds error ratio versus k for n = 50M, 0.75M, 0.085M, 0.115M andm = 500M, 7.5M, 0.85M, 1.15M.
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bound is 14571.0 times lower than that of Bose’s upper bound on
average.

6.4 Cr Formula Validation

Figs. 13a, 13b, 13c, and 13d, Figs. 14a, 14b, 14c, and 14d, and
Figs. 15a, 15b, 15c, and 15d plot the correct rates of CBFs
with different values of n,m, and k, respectively. Our results
show that our lower and upper bounds of the correct rate of CBFs
follow the empirical correct rates very well, regardless of the val-
ues of n,m, and k.

7 CONCLUSION

In this paper, we discuss the evolutionary of the formula of
Bloom Filter. Three formulas of false positive probability
are presented: Bloom’s formula, Bose’s formula, and
Christensen’s formula. There is an error in the deduction
process of Bloom’s formula, and a minor error in Bose’s for-
mula. Christensen’s formula is correct, but the false positive
must be caculated using an iterative table-based algorithm

with a time complexity of OðknmÞ. What is worse, it cannot
deduce the optimal value of k. To compute the optimal value
of k, we use information and entropy theory to deduce the
exact formula of k. To compute the false positive probability,
1) For smallm, Christensen’s formula can be used; 2) For large
m, we propose a new upper boundwhich ismuchmore accu-
rate than state-of-the-art. Fortunately, when m is infinitely
large, our upper bound becomes the same as the lower bound,
which is Bloom’s formula. Besides, we derive the bounds of
correct rate of Counting Bloom Filters through our proposed
formulas about Bloom Filters. All the implementation source
code ismade publicly available at GitHub [51].
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Fig. 13. Correct rate versus n form = 500M, 7.5M, 0.85M, 1.15M and k ¼ 6.

Fig. 14. Correct rate versusm for n = 50M, 0.75M, 0.085M, 0.115M and k ¼ 6.

Fig. 15. Correct rate versus k for n = 50M, 0.75M, 0.085M, 0.115M andm = 500M, 7.5M, 0.85M, 1.15M.
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