
Work-in-Progress: A Novel Clock Synchronization
System for Large-Scale Clusters

Zhuochen Fan∗†, Xiaodong Li∗†, Yanwei Xu†, Yuqing Li‡, Tong Yang∗, Steve Uhlig§
∗School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology and Application,

Peking University, China †Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd., China
‡School of Cyber Science and Engineering, Wuhan University, China

§School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

Abstract—Clock synchronization is essential in real-time ap-
plications of large-scale clusters. State-of-the-art Huygens clock
synchronization reduces synchronization errors through offset
probing loop correction between data center servers. However,
Huygens does not offer a solution for large-scale clusters. In
this paper, we propose a novel and scalable CAT-Sync clock
synchronization system for large-scale clusters, which includes
three key techniques: optimal probe topology Construction,
probing channel Assignment, and Time-slice synchronization. In
CAT-Sync, the workload of each host is the same and will not
increase with the expansion of the cluster size. Our CAT-Sync
system achieves a stable clock synchronization accuracy within
2 microseconds on 60 virtual machines, and the average clock
offset for the entire synchronization process is improved by about
44.8% compared to Huygens.

Index Terms—clock synchronization, cluster, probe, offset,
topology, edge coloring, broadcast, time slice

I. INTRODUCTION

A. Background and Motivations

With the development of high-performance computing tech-

nology and services, the scale of computer systems needed

to handle existing workloads continues to expand. Many

distributed applications nowadays require the use of networks

of clusters of host devices [1]. Clock synchronization is es-

sential in clustered system applications, providing support for

functions such as data sharing, coordination between devices,

and interaction at specified times.

Large-scale cluster clock synchronization is based on pre-

cise synchronization between the clocks of two hosts. The

mainstream clock synchronization schemes, including the

widely used NTP [2], PTP [3], DTP [4], Huygens [5], etc.,
send probes in the form of timestamped packets. The key idea

of packet probing is to determine the offset between two clocks

by estimating the one-way delay (OWD). Specifically, when

Host A needs to synchronize Host B’s clock, Host A first

sends a probe packet 1 to Host B, and records the sending

time TXA. When Host B recognizes probe packet 1, it records

its receiving time RXB , sends a probe packet 2 to Host A,

The first two authors contribute equally. Corresponding authors: Yanwei
Xu (xuyanwei1@huawei.com) and Tong Yang (yangtongemail@gmail.com).
This work is supported by National Key R&D Program of China
(2022YFB2901504), and National Natural Science Foundation of China
(NSFC) (No. U20A20179).

and returns RXB and the sending time of probe packet 2 txB .

Host A records its receiving time rxA after receiving probe

packet 2. The probe host calculates OWD and offset from

the four timestamps mentioned above. If the local real-world

clock time is t, the offset of Host A and Host B relative to

t is ΔA and ΔB , then A’s clock time is tA = t + ΔA, B’s

clock time is tB = t + ΔB , and the offset between hosts is

ΔAB = ΔB − ΔA. Under the assumption that the OWD of

probe packet 1 and probe packet 2 are the same, Host A can

calculate the OWD O = (RXB−TXA)+(rxA−txB)
2 and offset

ΔAB =
(RXB−TXA)−(txB−rxA)

2 .

Based on O and ΔAB , the probe host can modify the local

clock to synchronize with the probed host. Existing clock

synchronization schemes are based on these four timestamps,

which differ in how timestamps are generated and processed.

B. Prior Art and Limitations

Huygens [5] is a high-precision clock synchronization

scheme for data center networks, which reduces synchroniza-

tion errors through Loop Correction for offset probing between

servers (see the next paragraph for details). It uses SVM to

batch process all probe packets between any two hosts in a

certain time interval, to filter out path noise and obtain the

offset between the two clocks. Thus, the main factor affecting

the accuracy of offset measurement is whether the round-trip

path is symmetrical, e.g., the number of switch hops passed by

the round-trip probing path between nodes may be different.

Since clock synchronization is symmetrical and transitive,

i.e., ΔAB = ΔB − ΔA = −ΔBA, ΔAC = ΔAB + ΔBC ,

ideally the sum of the loop clock offset is 0. However, due to

measurement errors, the measured loop offset sum is often dif-

ferent from 0. To ensure optimal synchronization performance,

Huygens uses the minimum norm solution to distribute the

offset errors of the loop to different paths. Specifically, given

the probing topology G(V,E), the corresponding loop matrix

A|L|×|E| are obtained, where each column corresponds to a

directed edge (i, j) ∈ E of G1, and each row corresponds to

a linear independent loop of ln ∈ L. If (i → j) ∈ ln is a

forward edge on E, the corresponding element of A is 1, the

reverse edge is -1, and the other is 0. The current offset probe

1i and j represent two servers in Huygens, and two hosts in this paper.

519

2022 IEEE Real-Time Systems Symposium (RTSS)

2576-3172/22/$31.00 ©2022 IEEE
DOI 10.1109/RTSS55097.2022.00056

20
22

 IE
EE

 R
ea

l-T
im

e
Sy

st
em

s S
ym

po
siu

m
 (R

TS
S)

 |
 9

78
-1

-6
65

4-
53

46
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RT
SS

55
09

7.
20

22
.0

00
56

Authorized licensed use limited to: Peking University. Downloaded on January 14,2023 at 04:48:32 UTC from IEEE Xplore. Restrictions apply.

between all host clocks is denoted as M = [Me]|E|×1. The

loop error Y = [yl]|L|×1 is obtained through AM = Y . The

error yl of each loop is assigned to the contained probe edge

via ΔM = AT (AAT)−1Y , where ΔM = [||ΔMe||]|E|×1,
and the offset correction corresponding to each edge e ∈ E
is ΔMe. Finally, the error compensation is performed on the

results, i.e., the offset optimized for the loop is M −ΔM .

However, Huygens suffers from the following limitations

that prevent it from being deployed in large-scale clusters: 1)

Huygens does not specify how to build a probe topology; 2)

Huygens does not provide how to coordinate globally across

different probe sessions to avoid overwrite errors when a large

number of timestamps interact at the same time; 3) When the

clocks in the cluster are not synchronized, It is difficult for

Huygens to ensure that all clock gaps between the current

hosts are measured at the same time.

C. Our Solution

Based on the above analysis, we propose a novel clock

synchronization system named CAT-Sync for large-scale

clusters, designed to address the following challenges:

1) Probe Topology Building. Clock synchronization in a

cluster requires synchronizing all hosts to one of the refer-

ence hosts. Since there is an upper limit to the number of

probed sessions that each host can support, it is necessary

to synchronize the other hosts to the reference clock in a

hierarchical manner. However, the error increases with the

layers of probe relationships. Also, the effects of different

loops on error optimization is different under different probe

topologies. To address this, we propose an optimal probe
topology Construction scheme based on graph theory, to
achieve the lowest possible resource consumption. See Section

II-B for details.

2) Probe Session Conflict. The generation of hardware

timestamps relies on the time register in the network card,

which usually has only one register due to the cost limitation.

Thus, if the clock probe packet on the host does not read the

timestamp data into the system before the next packet arrives,

an overwrite error will occur. According to our tests, it takes

more than 100μs between the arrival of two probe packets.

To address this, we propose to exploit the edge coloring of
graphs to realize global time-division channel Assignment of
probe sessions. See Section II-C for details.

3) Probe Session Synchronization. The probe loop opti-

mizes the error on the premise that the clock gaps between

the hosts are measured at the same time. This is difficult to

guarantee if the synchronization between the clocks is not

reached. To address this, we propose a probing Time-slice
clock synchronization scheme based on message propagation
tree and controller broadcasting. See Section II-D for details.

II. SYSTEM DESIGN

A. Overall

The workflow of CAT-Sync is as follows. The cluster

controller is responsible for the management and control of

the entire clock synchronization cluster. Once the controller is

started, a listening port is opened to accept incoming connec-

tions from the host node. Upon receiving a connection request,

CAT-Sync creates a separate persistent TCP connection for

each host (for data transmission) and a regular heartbeat thread

to verify that the connection is still working properly. Session

management information can be obtained in real-time, e.g.,

hosts joining and leaving. This allows us to keep the probe

topology up to date. For a synchronous cluster composed of

all connected host nodes, the controller constructs the optimal

probe topology under the limitation of single-machine probe

sessions, and uses the edge coloring algorithm of the graph

to globally allocate the time probe channels. In each time

slice, according to the assigned probe tasks and session time-

division channels, hosts send probe packets to each other

through the connection and obtain the timestamps of the

probe packets. Controller broadcasts and message tree-based

messaging guarantee a globally synchronized start and end

of the current time slice. At the end of each time slice, the

probe host collects the corresponding timestamp data for all

probe sessions in the current time slice, calculates the clock

drift and offset with all the probed hosts, and reports them

to the controller. After receiving the probe results between

all hosts in the current time slice, the controller applies probe

loop optimization to correct errors. Then, it calculates the drift

of each host relative to the reference clock and the offset at

the end of the current time slice, and sends them to all hosts.

Finally, the host adjusts its local clock based on the received

optimized probe results.

B. Optimal Probe Topology Construction

Once the probe session management is performed on the

currently connected host node, the controller constructs the

optimal probe topology and maximizes the use of the probe

loop to optimize synchronization accuracy.

Since there is an upper limit on the number of probing ses-
sions that each host can support, the cluster probing topology
optimization problem is equivalent to: given the number of
nodes N and the maximum node degree K, we construct an
undirected connected graph G(V,E) such that each node has
at least in a loop ln ∈ L, where edge (i, j) ∈ E indicates that

there is a probing relationship between two nodes. Hence, our

construction must trade off the following two aspects:

1) The greater the distance d from the host v ∈ V to the

reference clock, the more the accuracy drops. Therefore,

it should be synchronized to the reference clock along

the shortest path |dv|;
2) The larger the cumulative sum of linear independent

loop lengths
∑

ln∈L |ln|, the more non-zero entries in

the probing loop matrix A, and the smaller the loop

correction error ||ΔMe|| based on the minimum norm

solution.

1) To achieve the minimum synchronization distance
between nodes, we construct a hierarchical topology based
on the BFS spanning tree with the reference clock C0 as
the root node. We assume that each node is no more than d
hops from C0. Except for leaf nodes, the node degree should

520

Authorized licensed use limited to: Peking University. Downloaded on January 14,2023 at 04:48:32 UTC from IEEE Xplore. Restrictions apply.

be K, i.e., each node in d-th layer is connected to one node

in the (d − 1)-th layer, and is connected to K − 1 nodes in

the (d + 1)-th layer. Therefore, the total number of nodes in

the d-th layer is Nd = K(K − 1)d−1.
2) To maximize the synchronization accuracy of loop
correction, we add edges based on the above hierarchical
spanning tree topology, to form a set of linear indepen-
dent loops with the maximum cumulative sum of loop
lengths. For an undirected connected graph G(V,E), the

set of linear independent loops (i.e., the basis of the linear

equation system) based on the spanning tree T is uniquely

determined, where each independent loop corresponds to a

closed loop (f, g, . . . , f) consisting of any edge (f, g) on G-

T and the upper path (g, . . . , f) on T , respectively. Since

the number of nodes, edges, and loops satisfy the constraint

|L| = |E|−|V |+1, i.e., given the number of nodes |V |, more

edges provide more linearly independent loops. Therefore, the

optimal probe topology construction problem is equivalent to

how to add M = KN
2 −N +1 edges to the last layer to make

it K-edges connected, so that the loop length is the maximum

value of 2d+1. We propose a feasible solution of calculating

the set of feasible leaf nodes and the shortest path between

any two leaf nodes, and then sort the feasible edges based on

the shortest path and add edges in turn.

Remark (Figure 1). For the operation of adding edges to

leaf nodes to form probe loops described by 2), it can be

divided into the following two cases:

Case 1: When the last layer of leaf nodes are full, i.e.,

when the number of nodes satisfies N = 1 +
K(1−(K−1)d)

K−2 ,

the scheme of adding edges to the spanning tree is that the leaf

nodes are connected to the leaf nodes with an integer multiple

of K − 1 in turn. In Figure 1, node 8 is connected to nodes

5, 11, and 14.

Case 2: When the last layer of leaf nodes is dissatisfied:

i.e., when some leaf nodes of the d-th layer do not exist, each

K−1 edges that should connect them respectively is processed

as follows: 1) We arbitrarily select an edge and connect it to

its parent node; 2) We connect the remaining K−2 edges each

other between different sub-trees of C0 according to the two

vertices of each edge. Assuming that the leaf node 16 in Figure

1 does not exist, then the nodes 7, 10, and 13 that should be

connected to it are processed as: node 7 is connected to its

parent node 4, and nodes 10 and 13 are directly connected.

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16

Fig. 1. An example of optimal topology construction: K = 4.

C. Probing Channel Assignment

We choose a time channel for the probe session or probe
edge between hosts in the cluster. This is necessary to allow
the timestamp data of the current packet on each host to
be read before the next packet arrives, avoiding overwriting
when a large number of timestamps interact. It consists of

the following two steps: 1) We utilize the Misa-Gries coloring
algorithm [6] to color the edges of the probe topology (V,E)
so that any two edges are not the same color. In this way, we

can find an edge coloring scheme for any graph in polynomial

time, and the number of colors required is no more than K+1,
where K is the maximum node degree; 2) We perform a
global assignment of probing session channels according to
the obtained edge coloring scheme, and assign one color of
an edge to a unique time channel, as shown in Figure 2. Since

at most K + 1 channels are needed to complete the channel

allocation, a static channel allocation scheme can be generated

to ensure the efficiency of the coloring algorithm. When the

topology changes, such as when a host exits or a new host

joins, the channel allocation scheme of the probe session is

updated.

1

2 3

4

a b
c

b a

c

Fig. 2. An example of assigning time-division channels to each probing
session, where K = 3. It requires only 3 colors in total (for a, b, c).

D. Time-Slice Synchronization

Time-slice synchronization includes the simultaneous start

and simultaneous end of time slices. Simultaneous starts serve

the purpose of keeping the probing time channels aligned

on all hosts. Simultaneous ends deal with loop correction

probing errors. The precise synchronization of time slices

among hosts on the entire cluster depends on sending time-

slice end messages between the hosts and between the hosts

and controller. For this, the message only needs to include

the time slice ID. The message is forwarded and processed as

the highest priority message within the hosts and controller.

To avoid creating a storm of messages, the hosts or controller

should block the processing of subsequent messages with the

same ID after receiving an end message with a time slice

ID. It includes the following three steps: 1) We build a BFS
spanning tree based on the probe topology with each host
node as the root, and obtain the propagation path of the
time-slice synchronization message starting at that node as
the spanning tree rooted with it for any host; 2) In each

time slice: On the sending side, the host judges whether the

current time slice ends according to the local clock. Once it

521

Authorized licensed use limited to: Peking University. Downloaded on January 14,2023 at 04:48:32 UTC from IEEE Xplore. Restrictions apply.

ends, it immediately stops sending and receiving local probe

packets, and simultaneously sends time-slice end messages

to the controller and neighboring hosts along the message

propagation path; On the listening side, the host listens for

time-slice end messages from controller or other hosts. Once

received, it immediately stops the local probing, and forwards

time-slice end messages to all neighboring hosts; 3) After
the controller receives the first time-slice end message of the
host, it generates a broadcast message to all host nodes, and
synchronizes the entire hosts to enter a new time-slice.

III. EVALUATION

Our CAT-Sync is scalable to support clusters of arbitrary
size. Since the number of probes for each host is fixed, the
workload of each node is fixed. Therefore, large-scale cluster
deployment with any number of nodes can be supported.

A. Experimental Setup

Implementation.We build a cluster consisting of 60 virtual

machines for the experimental evaluation of CAT-Sync,

where the probe interval is 20000μs and the time-slice length

is 10s. We construct a physical star topology of 60 virtual

machines and an OVS switch. The number of channels is 7,

so for this topology: K = 6, d = 4 (see Section II-B). Based

on this physical network topology, we construct experiments

on CAT-Sync and Huygens logical topologies, respectively.

0 100 200 300 400
0
2
4
6
8
10
12
14
16

O
ffs
et
(u
se
c)

Time (sec)

Baseline CAT-Sync

Fig. 3. Clock offset for long-term synchronization.

Experimental platform. Our experiments are performed on

the Klonet network simulation experiment platform [7], whose

architecture includes: 1) infrastructure, 2) simulated network,

3) control framework, and 4) application interface2.

Baseline. We use the original Huygens [5] as the baseline

solution. We first select one machine as the controller device

and reference clock, and build loop topology around this

21) The infrastructure is the foundation of the platform network and com-
puting resources; 2) The simulated network is the virtual network deployed by
the platform; 3) The control framework is a collection of various control logics
of the platform, responsible for parsing instructions and executing various
operations; 4) The application interface is the interface for users to interact
with the platform and conduct experiments.

reference clock, with a maximum of 20 nodes in each loop. In

this experiment, we build 3 loops around the reference clock.

B. Experimental Results
From Figure 3, the experimental results show that the clock

offset of CAT-Sync has obvious advantages compared to

Huygens: While the offset of CAT-Sync has been relatively

stable around 100 seconds, the offset of Huygens does not

gradually stabilize until beyond 300 seconds. Finally, the offset

of CAT-Sync is absolutely stable within 2μs, while Huygens

is still in large fluctuations. During the entire synchronization

process, the average offset of CAT-Sync is 3.48μs, which

is 55.8% times that of Huygens. In other words, CAT-Sync
achieves 44.2% improvement over Huygens. In Figure 4, we

find the drift distribution of CAT-Sync is significantly closer

to the y-axis, which also demonstrates that its offset is better.

Fig. 4. The CDF of CAT-Sync and Baseline on clock offset.

IV. CONCLUSION AND FUTURE WORK

This paper analyzes the limitations of the state-of-the-

art Huygens scheme and proposes a novel and scalable

CAT-Sync synchronization system specially designed for

large-scale clusters. CAT-Sync includes 3 key techniques and

achieves a stable clock offset of less than 2μs in the clusters

composed of 60 virtual machines. As future work, we plan to

further optimize the proposed 3 key techniques, expand the

cluster size for future experiments, and conduct full testbed

implementations on more real-world platforms.

REFERENCES

[1] N. Shivaraman, P. Schuster, S. Ramanathan, A. Easwaran, and S. Stein-
horst, “Cluster-based network time synchronization for resilience with
energy efficiency,” in Proc. RTSS, 2021, pp. 149–161.

[2] D. Mills, “Internet time synchronization: the network time protocol,”
IEEE Trans Commun, vol. 39, no. 10, pp. 1482–1493, 1991.

[3] J. C. Eidson, M. Fischer, and J. White, “Ieee-1588™ standard for a
precision clock synchronization protocol for networked measurement and
control systems,” in Proc. PTTI, 2002, pp. 243–254.

[4] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally
synchronized time via datacenter networks,” in Proc. SIGCOMM, 2016,
pp. 454–467.

[5] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and
A. Vahdat, “Exploiting a natural network effect for scalable, fine-grained
clock synchronization,” in Proc. NSDI, 2018, pp. 81–94.

[6] J. Misra and D. Gries, “Finding repeated elements,” Sci Comput Program,
vol. 2, no. 2, pp. 143–152, 1982.

[7] J. Xie, W. Shan, C. Xiao, T. Ma, L. Chen, H. Yu, and G. Sun,
“Klonet: a network emulation platform for the technology innovation,”
Telecommunications Science, vol. 37, no. 10, pp. 66–75, 2021.

522

Authorized licensed use limited to: Peking University. Downloaded on January 14,2023 at 04:48:32 UTC from IEEE Xplore. Restrictions apply.

