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Abstract—The field of quantile estimation has grown in impor-
tance due to its myriad practical applications. Recent research
trends have evolved from estimating the quantile for a single
data stream to developing data structures that can concurrently
estimate quantiles for multiple sub-streams, also known as flows.
This paper introduces a novel framework, M4, designed to
estimate per-flow quantiles in data streams accurately. M4 is a
versatile framework that can be integrated with a wide array of
single-flow quantile estimation algorithms, thereby enabling them
to perform per-flow estimation. The framework employs a sketch-
based approach to provide a space-efficient method for recording
and extracting distribution information. M4 incorporates two
techniques: MINIMUM and SUM. The MINIMUM technique
minimizes the noise on a flow from other flows caused by
hash collisions, while the SUM technique efficiently categorizes
flows based on their sizes and customizes treatment strategies
accordingly. We demonstrate the application of M4 on three
single-flow quantile estimation algorithms (DDSketch, t-digest,
and ReqSketch), detailing the specific implementation of the
MINIMUM and SUM techniques. We provide theoretical proof
that M4 delivers high accuracy while utilizing limited memory.
Additionally, we conduct extensive experiments to evaluate the
performance of M4 regarding accuracy and speed. The experi-
mental results indicate that across all three example algorithms,
M4 significantly outperforms two comparison frameworks in
terms of accuracy for per-flow quantile estimation while main-
taining comparable speed.

I. INTRODUCTION

A. Background and Motivation

With the development of data stream processing, accurate,

real-time extraction of required information from a large

volume of high-speed data streams is attracting increasing

attention [1]–[5]. Among the various types of information,

quantile information, which requires distribution statistics for

data streams, has become a focal point of numerous studies

[6]–[12]. Recent research trends have evolved from estimating

the quantile for a single data stream to developing data

structures that can concurrently estimate quantiles for multiple

sub-streams, also known as flows. In practical scenarios, many

metrics necessitate per-flow granularity estimation of distri-

bution, such as Latency [13]–[22], Inter-Arrival Time [23]–

[25], Packet Size [26]–[29], and TTL (Time to Live) Value

[30], [31]. Accurate estimation of per-flow distribution has

wide-ranging practical applications and significant potential in

distributed network scenarios, including improving the quality

of service (QoS) for users [32]–[34], enhancing network
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anomaly detection [35]–[37], and boosting the performance

of Content Delivery Networks (CDNs) [38]. Consequently,

the primary objective of this article is to perform quantile

estimation for each individual flow in the data stream.

A data stream is a sequence of items, each repre-

sented as a key-value pair. Items sharing the same key
compose a flow. The shared key serves as the flow ID1.

The value is the metric that needs processing. All items

from different flows are intermixed in a data stream

(e.g., DS = {〈a, 3〉, 〈a, 2〉, 〈b, 5〉, 〈d, 1〉, 〈a, 4〉, . . .}). This

paper uses quantile to demonstrate per-flow value distribu-

tion. The items in a flow can be represented by a multiset

F = {〈a, x1〉, 〈a, x2〉, · · · , 〈a, xn〉} of size n, where a is the

key, xi is the value and x1 ≤ x2 ≤ · · · ≤ xn. Given a

percentage p (0 ≤ p ≤ 1), the p-quantile of value is x∗ s.t.
the percentage of xi ≤ x∗ in the multiset F equals to p. With

the above preliminaries, we give the problem definitions:

• Per-Flow Quantile Estimation.
SELECT key, p-quantile(value)
FROM DataStream
GROUP BY key

• Single-Flow Quantile Estimation.
SELECT p-quantile(value)
FROM DataStream

Accurately estimating the per-flow distribution is of wide

practical usage and has many important potential applications

in distributed scenarios. We provide three use cases as follows:

1) Improving of the quality of service (QoS) for online
app users. In the digital era, online applications such as real-

time video communications, online gaming, and streaming

services have become integral to daily life [32]–[34]. These

applications demand high-quality network services to ensure

seamless user experience. Any degradation in network per-

formance, particularly in terms of latency, can significantly

affect the Quality of Service (QoS). This is especially true for

applications requiring real-time interactions, such as remote

control systems and remote sensing applications, where delays

can compromise operational integrity and user experience. The

challenge for network managers in maintaining optimal QoS

lies in the ability to precisely identify and rectify latency

1A flow ID is typically defined as a part of the five tuples: source IP address,
destination IP address, source port, destination port, and protocol. This paper
considers the number of items in a flow as the flow size, also referred to as
the item frequency.



issues at a per-user granularity. By pinpointing the exact

source and user with latency issues, network managers can

implement targeted interventions to resolve these issues swiftly

and efficiently.

2) More effective network anomaly detection. In this

scenario, a flow refers to packets going through a network

link with the same five-tuple ID. Network anomalies, such

as congestion or the presence of malware, often manifest

as abrupt increases in the latency of several flows [35]–[37]

within a network link. These anomalies are critical to identify

and mitigate, as they can severely impact network performance

and security. Traditional single-flow quantile estimation ap-

proaches aggregate data across all flows, which can dilute

the impact of anomalies present in a small subset of flows.

This aggregation effect can lead to a failure in detecting

subtle yet critical anomalies, allowing them to persist unde-

tected and potentially cause extensive damage to the network

infrastructure or compromise sensitive data. Our algorithm,

by contrast, ensures that even minor deviations in latency

are detected, thereby significantly enhancing the sensitivity of

anomaly detection.

3) Cache performance optimization. A core challenge in

this domain [39]–[41] is the diverse latency requirements

and usage patterns across different flows, where a flow may

represent a distinct user or a specific service. High latency in a

flow often signals suboptimal data placement within the cache,

necessitating strategic adjustments to either the data’s location

or its storage modality to enhance access speed. Our approach

effectively evaluates cache strategy impacts on different flows,

identifying when optimizations reduces average latency but

inadvertently disadvantage high-priority users. It also identifies

strategies that benefit latency-insensitive services at the cost of

sensitive ones, allowing the development of cache strategies

that enhance system efficiency without compromising critical

service performance.

Numerous studies have significantly advanced the field of

single-flow quantile estimation [15]–[18], [42]–[45]. Approxi-

mate algorithms—often referred to as sketches—have predom-

inantly excelled in scenarios requiring low memory overhead

and rapid processing, with only minimal accuracy trade-offs.

However, a critical limitation inherent in these approaches is

their inability to discern among multiple flow IDs. They are

designed either to estimate quantiles for individual keys in

isolation or to aggregate across all data stream values without

key differentiation. This results in a binary choice: a focused

but isolated single-flow estimation or a comprehensive yet

undifferentiated analysis across all flows. It fails to address the

nuanced requirements of modern networked systems, where

identifying and analyzing per-flow metrics is crucial for opti-

mizing performance and detecting anomalies.

The evolution of applications and the diversity of their

requirements necessitate a more granular approach to quan-

tile estimation—one that can accurately measure and adapt

to the unique characteristics of each flow. To bridge this

gap, there are two strategic paths: designing a brand new

algorithm tailored for per-flow estimation [46], [47] or a

versatile framework capable of enabling existing single-flow

algorithms to handle per-flow queries. We advocate for the

latter, recognizing its potential for broad applicability and

design simplicity. This approach leverages the strengths of

existing algorithms to cater to scenarios with varying priorities

like throughput, accuracy, and memory efficiency.

By opting for a framework that transforms single-flow algo-

rithms into their per-flow counterparts, we present a solution

that is both adaptable and scalable. This framework not only

retains the inherent advantages of the original algorithms

but also expands their utility to support per-flow estimation,

thereby addressing a critical need in network management and

analysis. In doing so, our approach provides a comprehensive

toolset for network administrators and researchers, enabling

them to tackle a wide array of challenges with unprecedented

precision and flexibility.

There are several challenges when designing such a frame-

work. (1) Algorithmic Compatibility. Different single-flow

algorithms may have unique characteristics, optimizations,

and assumptions that may not directly translate to a per-

flow context. The framework must provide a flexible ar-

chitecture that can adapt various single-flow algorithms to

per-flow requirements without compromising their inherent

advantages. (2) Scalability. One of the foremost challenges is

ensuring that the framework scales efficiently with the number

of flows. Single-flow algorithms are typically optimized for

performance with a single data stream. Extending these to

accommodate multiple, potentially thousands or millions of

flows, can introduce significant computational and memory

overhead. The framework must efficiently manage resources

to maintain high performance and accuracy across all flows.

(3) Data Skew and Flow Variability. In real-world networks,

some flows may be more active or larger than others, leading

to data skew. The framework needs to handle such variability,

ensuring that large or high-volume flows do not overshadow

smaller ones.

Fig. 1: Illustration of M4. Arrows pointing from II to I

represent the hashing operation. Flow A is represented by blue.

Flow B is represented by red.



B. Our Solution and Contributions

To achieve our design goal, we propose a novel framework

named MINIMUM-SUM (M4). M4 is a framework that can
be applied to an extensive range of single-flow quantile
estimation algorithms, enabling them to perform per-flow
quantile estimation. For simplicity, we refer to the single-flow

algorithm on which we employ M4 as META. As depicted

in Figure 1, M4 uses limited memory to construct several

layers of buckets. Each bucket contains a META to record

distribution. Every META treats all incoming items identically.

We use hash functions to map flows to buckets for recording.

A single flow can be mapped to multiple buckets. If a hash

collision occurs, the distribution of the collided flows will

sum up in the bucket. Each bucket has a load capacity. The

insertion of a flow starts at a lower layer. When the buckets

in the lower layer overflow, we insert the subsequent items

into the upper layers. Buckets in higher layers have larger

capacity and finer granularity. M4 comprises two techniques:

MINIMUM and SUM. As long as the META can generate the

value distribution for a single flow, we can use MINIMUM
and SUM to transform it into an efficient per-flow quantile

estimation algorithm.

MINIMUM resolves hash collisions by randomly selecting

several buckets for each flow in each layer using multi-hashes

and extracting the real distribution from these selected buckets.

To address hash collisions, a straightforward solution is to use

a hash table of buckets, each containing a META to record the

value distribution of a flow. However, this approach requires

recording IDs and executing complex operations (typically

dependent on the number of flows) to locate another available

bucket during a hash collision, which is both memory and time

consuming. A more efficient solution is Memory Sharing. We

use w hash functions to map a flow to w buckets of META
for recording, providing us with w records for every flow.

Due to hash collisions, more than one flow may be mapped

into one bucket. Thus, every flow record may contain some

noise from other flows, and we need to compare and analyze

the distributions given by all the records to restore the real

distribution. For instance, as shown in Figure 1, a small flow

A and a large flow B are inserted into M42. Flow A can be

contained in the first layer, while flow B is segmented into

parts I and II3 due to its large size. Flow A and B encounter a

hash collision at bucket � in the first layer, so their distribution

information is mixed in the bucket. We need to use bucket �
and � to restore the real distribution of flow A and use bucket

� and � to restore the real distribution of part I of flow B.

Because noise at one value point only increases the density

at that point, by selecting the lowest density at each value
point, the estimated value distribution bears the slightest noise

possible. As we take the intersection of distributions, we call

it the MINIMUM technique. We can see in Figure 1 that the

2There is a predefined threshold categorizing flows according to their sizes.
Flows with sizes below that threshold are called small flows, otherwise large
flows.

3We cut flow B into top and bottom halves just for simplicity.

MINIMUM technique allows us to restore the real distribution

of flow A and part I of flow B. It should be noted that if

META can give an error-free result when estimating single-

flow distribution, our MINIMUM is optimal and can guarantee

a unilateral error of over-estimation when estimating per-flow

distribution.
SUM categorizes flows based on their sizes through seg-

mentation. It uses multiple layers to segment every flow into

multiple parts and tailor the treatment in each layer. Then it

aggregates these parts to generate the full distribution. There

are two reasons why we need flow categorization. First, the

flow size distribution in a data stream is usually highly skewed.

For example, in CAIDA [48] dataset, about 40% flows only

contain ≤ 3 items. It would be a colossal waste to allocate

equal resources to a small flow and a large one. Second, large

flows get more attention in practical applications4. Hence, the

larger a flow is, the more resources should be allocated to

achieve a fair or better accuracy than small flows. Thus, we

want to categorize flows according to their sizes efficiently.

However, we do not know if a flow is large or small in

advance. To solve this, M4 has a layered structure, where

lower layers are for coarse-grained recording of small flows

and higher layers are for fine-grained recording of large flows.

Each flow is considered a small flow in the beginning. When

the recorded flow size exceeds the capacity in lower layers,

we know it is a large flow, so we insert the subsequent items

into higher layers. In this way, the distribution information of a

large flow is scattered at multiple layers. We need to aggregate

all parts together to get the entire distribution. As shown in

Figure 1, we need to use bucket � and (�MINIMUM�) to

restore the real distribution of flow B. Because the distribution

in two layers corresponds to two disjoint parts of flow B, we

should sum up the density at each value point to construct the

overall distribution information. Therefore, we call it the SUM
technique. We can see in Figure 1 that the SUM technique

allows us to restore the real distribution of flow B.
We apply our M4 to three METAs (DDSketch [15], t-digest

[16], [18], and modified ReqSketch [17], [42]). The three

METAs each have their emphasis. DDSketch allows us to focus

on the tail value distribution and bounds the relative error

of quantile estimation to a constant at different percentages.

t-digest allows us to tailor the relative accuracy of quantile

estimation at different percentages. ReqSketch provides a

relative guarantee on the error of rank estimation. We design

the MINIMUM and SUM techniques for them according to

their features.
We devise two comparison frameworks (see Section V-A2

and Section V-A3) for better comparison. We perform ex-

tensive experiments to evaluate our performance regarding

accuracy and speed. Experiment results indicate that M4 is
per-flow friendly and accurate. For tiny flows, maximum value
estimation is on average 90.6% error-free, while comparison

frameworks offer almost no error-free estimates. For larger

4Large flows tend to represent critical or high-priority data. By paying more
attention to large flows, administrators can optimize the delivery of important
information and enhance overall system performance.



flows, the Average Logarithm Error (ALE) of M4 reach 2.26×
lower than comparison frameworks. M4 is memory-efficient.
It only needs 6MB to handle 27M items. We also provide

theoretical proof that M4 delivers high accuracy while utilizing

limited memory.

Key contributions:
• We introduce M4, the first general framework that can be

applied to a wide range of single-flow quantile estimation

algorithms to accomplish per-flow quantile estimation, fill-

ing a gap in the research field.

• We propose the MINIMUM and SUM techniques. Together,

they reduce the error from hash collisions and allow us to

tailor treatment strategies for flows of different sizes.

• We apply M4 to DDSketch, t-digest, and modified ReqS-

ketch and implement them on a CPU platform. Compared

to two comparison frameworks, M4 achieves significantly

better accuracy with a comparable speed across all three

algorithms. All codes are available on GitHub [49].

II. RELATED WORK

A. Sketch

A sketch is a type of probabilistic data structure designed

to process data with small and controllable errors. One of

the most classic sketches is CM Sketch [50], designed for

estimating item frequency. CM Sketch consists of d arrays,

each array Ai(1 ≤ i ≤ d) has w counters and is associated

with a hash function hi(·). When an incoming item e is

inserted, we increase the counter Ai[hi(e)%w] by 1 for all

i ∈ {1, 2, . . . , d}. To query the item e, CM Sketch reports

the minimum counter among all the d mapped counters

determined by hash functions. Other classic sketches include

Flajolet-Martin (FM) Sketch [51], CU Sketch [52], Count

Sketch [53], CSM Sketch [54] and CMM Sketch [55].

B. Single-Flow Quantile Estimation
Quantile estimation approximates the distribution of met-

rics, essential for analyzing large or streaming datasets. While

previous studies have advanced single-flow quantile estimation

[15]–[18], [42]–[45], they fall short in multi-flow scenarios

typical in data streams from diverse sources. Our framework,

M4, extends these methods to estimate distributions per flow.

We illustrate its application using three algorithms: DDSketch,

t-digest, and ReqSketch, each with unique advantages. DDS-

ketch allows us to focus on the tail value distribution and

bounds the relative error of quantile estimation to a constant

at different percentages. t-digest allows us to tailor the rela-

tive accuracy of quantile estimation at different percentages.

ReqSketch provides a relative guarantee on the error of rank

estimation.

1) DDSketch:
DDSketch [15] is designed for estimating value distributions

by partitioning the value range into segments, each monitored

by a counter for values within the segment. The segment

boundaries are determined by γ := (1 + α)/(1 − α), with

each segment’s counter, Ci, tallying values x in the range

γi−1 < x ≤ γi. The insertion of a value x is indexed by

�logγ(x)�. DDSketch approximates values in a segment by

x̂ = 2γi

γ+1 , maintaining a relative error within α. The trade-off

between the range coverage and accuracy is governed by α: a

higher α extends the range but reduces accuracy. To estimate

the value at a certain percentile p ∈ [0, 1], we sum counters

up to the relevant segment i and use x̂ = 2γi

γ+1 as the quantile

estimate.

2) t-digest:
The t-digest [16], [18] algorithm clusters real-valued sam-

ples to approximate value distributions, grouping items by

similarity. Each cluster records the mean value and total count

of its items. Items are added to the closest cluster, updating

its statistics. t-digest controls cluster sizes to balance precision

and memory use, adjusting cluster counts through a scale func-

tion k and a compression parameter δ. The function k ensures

uniform cluster weight growth, allowing more clusters where

data is denser. For quantile queries, weights are summed until

the target cluster is identified, assuming uniform distribution

within clusters to estimate the queried value.

t-digest [16], [18] is designed to estimate value distribu-

tions by clustering real-valued samples. t-digest uses clusters

to group items with near values. Each cluster contains an

average cell recording the mean value of absorbed items,

and a weight cell recording the total number of absorbed

items. Each incoming item is assigned to the cluster with

the nearest average value, after which the average and weight

cells of that cluster are updated. The key idea of t-digest is

to confine the weight of each cluster to an appropriate level,

being small enough to record the distribution accurately, while

large enough to avoid unacceptable memory costs. Accurate

confinement is achieved by constantly monitoring all clusters’

weights and keeping them at the same level. There are a non-

decreasing scale function k : [0, 1] → R describing the

weight restriction and a compression parameter δ bound-

ing the number of clusters used. We define wi as cluster

Ci’s weight value, and N as
∑
i

wi. Each wi must satisfy:

k(w<i+wi

N )−k(w<i

N ) ≤ 1
δ . As a result, t-digest allocates more

clusters to the segment of value with more items. Besides,

we can tailor the relative accuracy of quantile estimation at

different percentages by changing the scale function k. To

query for the value at percentage p ∈ [0, 1], we accumulate

cluster weights until finding the cluster that p falls in. Deeming

that items are uniformly distributed in each cluster, we can

get the estimated value according to the position of p in that

cluster.

3) ReqSketch:
ReqSketch [17], [42] employs multiple levels of compactors

to store item values, utilizing O(logN) compactors for a flow

size N , each with a buffer of similar size. Items enter at

level 0 and, upon a compactor’s capacity being reached, a

sorted even-sized subset is compacted and half its elements

are elevated to the next level, preserving total item weight due

to the weighting scheme where items at level h are assigned a

weight of 2h. This mechanism, known as compaction, ensures

the integrity of distribution estimates. To estimate a value at a



(a) Insert (b) Query

Fig. 2: Framework structure of M4.

certain percentile p, item weights are cumulatively tallied from

the smallest value until reaching p, with the corresponding

item’s value serving as the estimate.

III. M4 DESIGN

A. Problem Statement

DEFINITION 1. Data Stream. A data stream is a series
of items appearing in sequence. Each item ei is a key-value
pair. The key serves as an ID, while the value represents the
metric we aim to process. An example of a data stream is
DS = {〈a, 3〉, 〈a, 2〉, 〈b, 5〉, 〈d, 1〉, 〈a, 4〉, . . .}.

DEFINITION 2. Flow. Items sharing the same key compose
a flow, and the shared key is their flow ID. The number of
items in a flow is the flow size, also called the item frequency.
An example of a flow is F = {〈a, 3〉, 〈a, 2〉, 〈a, 4〉, . . .}.

DEFINITION 3. Quantile. Given a numerical multiset S =
{x1, x2, · · · , xn} of size n, where x1 ≤ x2 ≤ · · · ≤ xn, and
a percentage p (0 ≤ p ≤ 1), the p-quantile of multiset S is
defined as x�p(n−1)�+1.

Per-Flow Quantile Estimation. Given an arbitrary flow f in

a data stream of key-value pairs and a percentage p, we need

to estimate the p-quantile of value in f . To express it in SQL:

CREATE TABLE DataStream (

key int,

value int

)

/* Insert items into DataStream. */

SELECT key, p-quantile(value)
FROM DataStream
GROUP BY key

B. Framework Description

This section describes the structure and operations of M4.

Frequently used notations are outlined in Table I.

TABLE I: Notations.

Symbol Meaning
e an item in the data stream
f the key (flow ID) of a certain item
v the value of a certain item

Li the ith level of bucket array
bi the number of buckets in Li

wi the number of hash functions associated with Li

hi,j(·) the jth hash function in Li

li the capacity parameter for buckets in Li

ci the granularity parameter for buckets in Li

1) Framework Structure:
In Figure 2, M4 is presented as a four-tiered bucket array,

chosen for its balance between precision and efficiency. Each

level Li comprises bi buckets and employs wi hash functions

(hi,1(·) to hi,wi(·)). L1 captures the size and maximum value
of small flows, L2 the value distribution of moderate flows,

and L3 and L4 the distribution of large flows. We classify tiny,

medium, and huge flows as having sizes in [1, 3), [3, 255), and

[255,+∞), respectively. The algorithm M4, when integrated

with META (DDSketch, t-digest, or modified ReqSketch), is

referred to as M4-META.

Each L1 bucket in any M4-META contains c1 counters and

an MX cell for flow size and maximum value, respectively,

with a counter cell of l1 bits. Overflows occur when a cell’s

count maxes out. L1 is designed for scenarios where small

flows are less critical.

For levels Li where i ≥ 2, each bucket holds a META, with

uniform capacity and granularity within the level but varying

across levels to accommodate the significance and size of the

flows. A bucket overflows once its META reaches capacity.

The details for different METAs on Li(i ≥ 2) are as follows:

DDSketch. Referencing Section II-B1, DDSketches in levels

Li(i ≥ 2) consist of ci counter cells (c2 ≤ c3 ≤ c4), each

tracking the frequency of values within distinct segments. The

bit length of counters in Li is li (l2 ≤ l3 ≤ l4). A bucket in Li

overflows when any counter cell’s frequency hits its maximum

li-bit value.

t-digest. As per Section II-B2, a t-digest in levels Li(i ≥ 2)



includes ci clusters (c2 ≤ c3 ≤ c4), with each cluster

holding an average and a weight cell for the mean value and

item count, respectively. The weight cell length in Li is li
(l2 ≤ l3 ≤ l4). Overflow occurs when a bucket’s weight cell

frequency in Li maxes out its li-bit capacity.

mReqSketch. Mentioned in Section II-B3, mReqSketches in

Li(i ≥ 2) comprise li compactors (l2 ≤ l3 ≤ l4) with ci
cells each (c2 ≤ c3 ≤ c4) for value storage. The maximum

weight for an mReqSketch in Li is (2li − 1)× ci. Overflow is

determined when a bucket’s recorded frequency in Li reaches

this limit.

2) Framework Insertion Operation:
To insert an item e = 〈f, v〉 into M4-META, we target

the lowest non-overflowed level, denoted as Ltop. First, e is

mapped to w1 buckets in L1 using the index �h1,j(f)%(b1c1)
c1

�
for j ∈ 1, 2, ..., w1. The (h1,j(f)%c1)

th counter cell in each

mapped bucket is incremented, and the MX cell is updated

to maxMX, v, unless overflow occurs, prompting an attempt

to insert e into L2.

For levels Li where i ≥ 2, e is mapped to wi buckets using

hi,j(f)%bi. If no overflow occurs in the mapped buckets, e is

inserted into the META of each, concluding the insertion.

3) Framework Query Operation:
Querying a flow with ID f involves mapping it to corre-

sponding buckets across levels, starting from L1 up to Ltop, the

highest non-overflowed level for f . Unlike insertion, querying

aggregates results from all relevant levels up to Ltop.

At each level Li, we obtain wi records for f , which may be

affected by hash collisions. To mitigate this, we employ the

MINIMUM technique to derive the least polluted distribution

by selecting the minimum values from counter and MX cells

for L1, representing the size and maximum value of f . For

levels Li where i ≥ 2, the approach adjusts based on META’s

structure, detailed in Section III-C.

The output for f depends on top. For top = 1, the result

is based solely on L1 data using the MINIMUM method. For

top ≥ 2, it is a SUM-merged aggregation from L2 to Ltop,

with specifics on the SUM technique in Section III-C.

4) Example:
Our example uses parameters 〈c1 = 4, l1 = 2, w1 = 3〉,

〈w2 = 3〉, 〈w3 = 3〉, and 〈w4 = 3〉.
In the insertion operation illustrated in Figure 2(a), item

e1 = 〈f1, v = 136〉 is first mapped to L1’s three buckets,

but due to counter overflows, it’s redirected and successfully

inserted into L3. For item e2 = 〈f2, v = 1671〉, mapping to

L1 reveals no overflow, so counters are incremented, and 1341

is updated to 1671.

Figure 2(b) shows the query operation. For f1, overflow at

L1 and L2 leads to top = 3, with results merged using the

SUM and MINIMUM techniques from L2 and L3. For f2, L1

provides the flow size as the minimum counter value (1) and

the maximum value as the smallest MX cell (1671).

C. MINIMUM & SUM
In this section, we expound on applying MINIMUM and

SUM to an arbitrary META and illustrate the workflow on three

example METAs, DDSketch, t-digest, and mReqSketch. First,

we present the distribution stored in the META as histograms

(Section III-C2). Subsequently, we perform MINIMUM and

SUM operations on the histograms (Section III-C3).

1) Rationale:
MINIMUM. The MINIMUM technique mitigates hash col-

lision effects without tracking IDs, facilitating O(1) time

complexity for both insertion and query operations. Recogniz-

ing that accurate distribution estimation equates to frequency

estimation at each value point, this method leverages the

fact that lower densities in flow buckets, resulting from hash

collisions, provide a more accurate density at any given value

point. Thus, selecting the minimum density from all mapped

buckets yields the most reliable value distribution estimate.

SUM. The SUM technique efficiently categorizes flows based

on their sizes and tailors treatment strategies accordingly,

maximizing the overall accuracy. To achieve so, we use

multiple layers to divide a flow’s distribution information into

various fractions. Since the information in these fractions is

disjointed, we need to sum up the density at each value point

to construct the overall distribution, akin to piecing together a

jigsaw puzzle.

2) From META to Histogram:
Histograms are a widely used method for representing

distributions. Consequently, every META can transform the

distribution information stored with its data structure into a

histogram. In this subsection, we illustrate how DDSketch, t-
digest, and mReqSketch are transformed into histograms.

DDSketch. As discussed in Section II-B1, DDSketch divides

the entire range of value into fixed segments, each tracked by

a counter cell that records the number of values that fall into

that segment. If we index each segment by i ∈ Z, then the

counter Ci records the number of value x that falls between

Vi−1 = γi−1 < x ≤ γi = Vi.

The process of transforming a DDSketch into a histogram

is illustrated on the left side of Figure 3. The range of each

segment on the horizontal axis is determined by Vi (i ∈
{0, 1, 2, 3}), and the frequency of each segment is the cor-

responding Ci.

t-digest. As discussed in Section II-B2, t-digest uses clusters

to group items with near values. Each cluster contains an

average cell Vi recording the mean value of absorbed items,

and a weight cell Ci recording the total number of absorbed

items. Each incoming item is assigned to the cluster with

the nearest average value, after which the Vi and Ci of that

cluster are updated. Besides, t-digest records the minimum

value Vmin and the maximum value Vmax.

The process of transforming a t-digest into a histogram

is illustrated in the middle of Figure 3. The range of each

segment on the horizontal axis is determined by Vmin, Vmax,

and Vi (i ∈ {1, 2, 3}). Since Vi is an average value, we divide

Ci into two halves and distribute them to adjacent segments.

mReqSketch. As discussed in Section II-B3, ReqSketch con-

sists of several levels of compactor serving as buffers. Each

level comprises multiple cells storing the value Vi of items.

Each cell in level i carries a weight Ci = 2i (i ∈ {0, 1, 2, . . .}).



Fig. 3: From META to Histogram.

Fig. 4: Segment Alignment.

Besides, ReqSketch also records the minimum value Vmin and

the maximum value Vmax.

The original design of compaction operation in ReqS-

ketch is memory-intensive and slow, making it unsuitable for

estimating per-flow value distribution in data streams. We

introduce minor modifications to the original design while

maintaining its quintessence and rename it mReqSketch. Ac-

cording to the new design, the incoming items are always

inserted into level 0. Whenever a level h becomes full, we

sort the items in level h, remove them from this level, and

randomly select half of the items (either odd or even indexed)

to be inserted into level h+ 1.

The process of transforming a mReqSketch into a histogram

is illustrated on the right side of Figure 3. The range of each

segment on the horizontal axis is determined by Vmin, Vmax,

and Vi (i ∈ {1, 2, 3, 4, 5}). Since Vi is a randomly selected

value, we divide Ci into two halves and distribute them to

adjacent segments.

Fig. 5: MINIMUM & SUM on aligned Histograms.

3) MINIMUM & SUM on Histogram:
After transforming META into histograms, we can per-

form the MINIMUM and SUM operations. These operations

necessitate a prerequisite known as Segment Alignment. As

illustrated in Figure 4, suppose we have two histograms H1

and H2, which require alignment. We first need to obtain

the union boundary set on the horizontal axis. The bound-

ary set in H1 is S1 = {20, 120, 200}, and that of H2

is S2 = {50, 140, 260}. Thus, the union boundary set is

U = {20, 50, 120, 140, 200, 260}. Next, for both histograms,

we scatter the frequency recorded in each segment determined

by Si into the new segments determined by U , following a

uniform distribution. The rationale here is that focusing on

a minimal interval allows us to approximate any distribution

with a uniform one, mirroring the central concept in calculus.

After Segment Alignment, we can operate on the frequency

in each segment of H ′
1 and H ′

2. As shown in Figure 5, if H ′
1

and H ′
2 originate from the same level of the same flow, we



will need to MINIMUM-merge them. We select the minimum

frequency in each segment to construct the MINIMUM-merged

distribution. If H ′
1 and H ′

2 originate from different levels of

the same flow, we will need to SUM-merge them. We add

the frequencies in each segment to construct the SUM-merged

distribution.

To query for the value at percentage p ∈ [0, 1], we accu-

mulate segment frequencies until finding the segment that p
falls in. Then we calculate a quantile according to the uniform

distribution and report it as the estimation result.

D. Discussion

1) Using histogram as an intermediate step:
A critical aspect of developing a universally applicable

framework is ensuring the adaptability of core operations,

such as MINIMUM and SUM, to accommodate a wide range

of single-flow algorithms. The inherent challenge lies in

the diversity of distribution outputs that quantile estimation

algorithms can produce. Our solution is normalizing these

distributions into histograms, which serve as a standardized

intermediary representation. It simplifies the implementation

of the MINIMUM and SUM operations by reducing them to

operations on histogram bins, thereby enhancing the frame-

work’s efficiency and scalability. This design choice un-

derscores the flexibility of the M4 framework, allowing it

to seamlessly incorporate a vast array of quantile estimation

algorithms without necessitating extensive customization or

reconfiguration. This adaptability is crucial for a general

framework aimed at broad applicability across diverse network

environments and applications.

2) Data Aging:
One potential area for improvement in our framework is

enhancing the data aging process to better align with real-

time data distribution changes. Currently, the mechanism for

phasing out outdated data is clearing the data structure for

every time window. It may not be sufficiently prompt, creating

a gap between the stored data distribution and the actual

current distribution. This discrepancy becomes particularly

problematic when data distribution shifts rapidly, potentially

compromising the method’s effectiveness. Improving the data

aging process to more accurately reflect immediate distribution

changes is essential for maintaining M4’s accuracy in dynamic

data environments.

3) Flow size distribution:
Our methodology, including the underlying data structures

and operations, is specifically optimized for data streams

characterized by a long-tailed distribution of flow sizes, a

common phenomenon in real-world applications where the

principle of the few governing the many often applies. This

long-tailed distribution pattern ensures that a small fraction of

flows carries a significant portion of data.

It is important to note, however, that in environments where

the flow size distribution is uniform, our approach may not

be the most efficient. We acknowledge that this specificity

may limit the universal applicability of our approach but we

believe that its optimized performance in its intended context

represents a significant contribution to the field.

IV. MATHEMATICAL ANALYSIS

There are two sources of error for M4: (1) The accuracy of

the recording algorithm in each bucket and (2) hash collision.

The error introduced by (1) is due to inaccuracies in META.

We will present an error bound for mReqSketch in this section

as we modified the original design of ReqSketch. As for (2),

which is hash collision related, we will present an error bound

for M4-DDSketch. The analysis is conducted at one specific

level at once, assuming that there are n buckets and m flows

arriving at the level we are examining, with each flow mapped

to w buckets.

A. Analysis of M4-DDSketch
We begin by defining some frequently used notations. freq

represents the total number of items at a level. freqi represents

the number of items in flow i at this level. freqTi represents

the number of items in flow i within a segment T at this level.

freqT represents the total number of items within the segment

T at this level.
1) Huge and Medium Flows:

Theorem 1. Let ˆfreqi denote the estimation of freqi. Then

P ( ˆfreqi > freqi + ε) < (
freq

nε
)w (1)

Proof. Let ˆfreqi,k (k ∈ {1, 2, . . . , w}) denote the kth record

of freqi, independent from each other. Since ˆfreqi =
min{ ˆfreqi,k}, we obtain that

P ( ˆfreqi > freqi + ε) = Pw( ˆfreqi,k > freqi + ε) (2)

Now we analyze the situation where w = 1. Let Aj denote

the event that flow j (j 
= i) is mapped to the same bucket

as flow i. Then we have ˆfreqi,1 = freqi +
∑
j �=i

freqj1Aj
and

P (Aj) = 1
n . Hence, E( ˆfreqi,1 − freqi) =

∑
j �=i

freqj
1
n <

freq
n . Because ˆfreqi,1 − freqi ≥ 0, we obtain

P ( ˆfreqi,1 − freqi > ε) ≤ E( ˆfreqi,1 − freqi)

ε
<

freq

nε
(3)

Therefore,

P ( ˆfreqi > freqi + ε) = Pw( ˆfreqi,1 − freqi > ε)

< (
freq

nε
)w

(4)

Theorem 2. Let ˆfreqTi denote the estimation of freqTi . Then

P ( ˆfreqTi > freqTi + ε) < (
freqT

nε
)w (5)

Proof. Let ˆfreqTi,k (k ∈ {1, 2, . . . , w}) denote the kth record

of freqTi , independent from each other. Since ˆfreqTi =

min{ ˆfreqTi,k}, we obtain

P ( ˆfreqTi > freqTi + ε) = Pw( ˆfreqTi,k > freqTi + ε) (6)



Now we analyze the situation where w = 1. Let Aj denote

the event that flow j (j 
= i) is mapped to the same bucket as

flow i. Then we have ˆfreqTi,1 = freqTi +
∑
j �=i

freqTj 1Aj
and

P (Aj) = 1
n . Hence, E( ˆfreqTi,1 − freqTi ) =

∑
j �=i

freqTj
1
n <

freqT

n . Because ˆfreqTi,1 − freqTi ≥ 0, we obtain

P ( ˆfreqTi,1 − freqTi > ε) ≤ E( ˆfreqTi − freqTi )

ε
<

freqT

nε
(7)

Therefore,

P ( ˆfreqTi > freqTi + ε) = Pw( ˆfreqTi,1 − freqTi > ε)

< (
freqT

nε
)w

(8)

Theorem 3. Let t̂p denote the estimated quantile of percentage
p. Then

P (|t̂p − tp| < αtp) ≥ 1− (1− e−
m
n )w (9)

Proof. The probability of hash collision happening in all

mapped buckets of a flow is PC = [1 − (n−1
n )m]w ≈

(1−e−
m
n )w. So the probability that there is at least one bucket

where no hash collision occurs is 1−PC = 1− (1− e−
m
n )w.

In this case, the error is bounded by |t̂p − tp| < αtp,

as proved in DDSketch. Therefore, P (|t̂p − tp| < αtp) ≥
1− (1− e−

m
n )w

Hash collisions may have a significant impact on quantile tp.

Unless strong assumptions are made on the value distributions

of flows, giving an error bound of t̂p is impossible when hash

collisions happen in all mapped buckets.

Comparison with prior work. We choose to compare M4-

DDSketch with SketchPolymer [47], a per-flow quantile esti-

mation algorithm which has a similar algorithm principle with

M4-DDSketch. The main difference between M4-DDSketch

and SketchPolymer is that M4-DDSketch uses multiple layers

for huge and medium flows, while SketchPolymer only uses

one layer after the filtration of tiny flows. When the memory

is limited, our algorithm is usually more accurate for huge

flows. The reason is that by using less bits storing medium

flows, we can allocate more memory for huge flows to avoid

hash collisions.

First, let us consider M4-DDSketch. We divide the flows to

medium and huge flows. The DDSketch for medium and huge

flows has the same α5, but we use fewer bits for the counters

of medium flows. We denote the memory cost of one bucket

for medium and huge flows by b1 and b2, respectively. We set

w = 1 and the amount of buckets for medium and huge flows

to be n1 and n2. We denote the total memory by C. Then we

have

n1b1 + n2b2 = C (10)

5For the definition of α, please refer to Section II-B1

We can choose the proportion of n1 and n2 to make the ex-

pected value of hash collision frequency (denoted by E(HC))
the same for medium and huge flows. For a huge flow i, the

error of its frequency(sum of medium and huge parts) freqi
has the expectation value:

E( ˆfreqi − freqi) = E(HC)F, (11)

where F is the total number of items. We denote the number

of medium flows by X1 and the number of huge flows by X2,

then we have
X1 +X2 = E(HC)n1

X2 = E(HC)n2

(12)

Combining equation (10), (11) and (12), we get

E( ˆfreqi − freqi) =
F

C
(X1b1 +X2b1 +X2b2) (13)

Therefore, we have the error bound

P ( ˆfreqi − freqi > ε) ≤ E( ˆfreqi − freqi)

ε

=
F

Cε
(X1b1 +X2b1 +X2b2)

(14)

Next, let us consider SketchPolymer. We have total memory=
C, bucket size= b2 (all the buckets should be of the size

for huge flows), X1 medium flows and X2 huge flows. The

corresponding error bound is

P ( ˆfreq′i − freqi > ε) ≤ F

Cε
(X1b2 +X2b2) (15)

The difference of the error bound is

F

Cε
(X2b1 −X1(b2 − b1)) (16)

In real situations, X1 is much larger than X2. So the error

bound of M4-DDSketch is smaller than that of SketchPoly-

mer.

2) Tiny Flows:

Theorem 4. Let x = wm
n , then the probability of getting a

wrong maximum value is ( e
−x+x−1

x )w.

Proof. Suppose that a flow f is mapped to w buckets

a1, a2, . . . , aw. The probability that there are ki other flows

in bucket ai (i ∈ {1, 2, . . . , w}) is

P{ki} =

(
wm−w

k1

)(
wm−w−k1

k2

)
. . .

(
wm−w−k1−k2−...−kw−1

kw

)

nwm−w

·(n− w)wm−k1−k2−...−kw−w. (17)

The equation above is based on the assumption that the

w hash values of a flow are independent. Due to the factor

(n − w)−k1−k2−...−kw , the probability of ki being large is

low. So we can assume that ki << m and arrive at the ap-

proximation P{ki} ≈ [
∏
i

(
wm−w

ki

)
(n−w)−ki ](1− w

n )
wm−w ≈

[
∏
i

(
wm
ki

)
n−ki ]e−

w2m
n . In this situation, the probability of



obtaining an incorrect maximum value is
∏
i

ki

ki+1 . Hence, the

probability of obtaining an incorrect maximum value is

[
∏

i

wm∑

ki=1

(
wm
ki

)
n−ki

ki
ki + 1

]e−
w2m

n

= [

wm∑

k=1

(
wm
k

)
n−k k

k + 1
]we−

w2m
n

= [
n− (1 + 1

n )
wm(−wm+ n)

wm+ 1
e−

wm
n ]w

x=wm
n≈ (

e−x + x− 1

x
)w

(18)

B. Analysis of mReqSketch

In this section, we conduct the error analysis for mReqS-

ketch. R(y) represents the count of values that is less than

or equal to value y across all items recorded at a level. Ri(y)
represents the count of value that is less than or equal to value
y in flow i at this level.

Error bound of mReqSketch. Consider the following setting.

There are M compactors C0, C2, . . . , CM−1 in the mReqS-

ketch. The buffer size in each compactor is b = 2a. The

number of items in this mReqSketch is at maximum capacity

N = 2a(2M − 1) ≈ 2a+M . Let p denote the real value of

the fraction of values less than y. Consider the estimation for

R(y).

Theorem 5. Let ˆR(y) denote the estimation of R(y). Then

P (|R̂(y)−R(y)| > εN) < 2e
− 4b2

1−(1−2p)b
ε2 (19)

Each time we conduct the compaction operation, we

operate on b values. Among these, the probability that the

number of value less than y is odd is given by

P =

b∑
i=1

[
(
b
i

)
pi(1− p)b−i]−

b∑
i=1

[
(
b
i

)
(−p)i(1− p)b−i]

2

=
1− (1− 2p)b

2

(20)

We must perform the compaction operation on C0 for 2M

times. If the selected items have odd indices, the probability

of having an error of +1 on R(y) is P , and the probability of

error-free is (1− P ). If items with even indices are selected,

the probability of having an error of −1 on R(y) is P , and the

probability of error-free is (1 − P ). Therefore, the expected

error is 0 each time, and the error variance is P (1− P ). The

overall expected error is 0, and the overall error variance is

2MP (1− P ).
We need to perform the compaction operation on C1

for 2M−1 times. If items with odd indices are selected, the

probability of having an error of +2 on R(y) is P , and the

probability of error-free is (1−P ). If items with even indices

are selected, the probability of having an error of −2 on R(y)
is P , and the probability of error-free is (1 − P ). Therefore,

TABLE II: Default parameter settings.

Algorithm
c l
c2 c3 c4 l2 l3 l4

M4-DDSketch 20 20 35 8 16 32
M4-t-digest 4 8 16 8 16 32
M4-mReqSketch 2 2 4 8 16 32
Strawman-DDSketch 35 32
Strawman-t-digest 16 32
Strawman-mReqSketch 4 32
CuckooFilter-DDSketch 68 32
CuckooFilter-t-digest 32 32
CuckooFilter-mReqSketch 8 32

the expected error is 0 each time, and the error variance is

4P (1 − P ). The overall expected error is 0, and the overall

error variance is 2M+1P (1− P ).
Performing the above analysis for all the compactors, we

find that the overall expected error in Ci(i ∈ {0, 1, 2, . . . ,M−
1}) is 0. The overall variance of the error in Ci is 2M+iP (1−
P ). Therefore, the variance of the error across the whole

mReqSketch is

σ2 = P (1− P )(2M + 2M+1 + . . .+ 22M−1)

= P (1− P )2M (2M − 1)

≈ 1− (1− 2p)2b

4
22M

≈ 1− (1− 2p)b

4

N2

b2

(21)

Note that the variance from Ci increases with i, so the

Lindeberg-Feller condition is not satisfied. We cannot apply

the central limit theorem. However, we can employ the sub-

Gaussian distribution estimation and find

P (|R̂(y)−R(y)| > εN) < 2e−( εN
σ )2 = 2e

− 4b2

1−(1−2p)b
ε2

(22)

V. EXPERIMENTAL RESULTS

A. Experiment Setup

1) Implementation:
We implement M4 and all related META data structures

(DDSketch, t-digest, and mReqSketch) in C++. The hash

functions are devised using the 32-bit Bob Hash (sourced from

an open-source website [56]), each with different initial seeds.

All the experiments are executed on an 18-core CPU server

(Intel i9-10980XE) with 128GB memory and 24.75MB L3

cache. Each experiment is repeated ten times to compute an

average result.

2) Straw-man Solution:
To compare effectively, we develop a straw-man solution

using a Dleft-like approach for each META (DDSketch, t-
digest, and mReqSketch), featuring three bucket arrays for

an optimal balance between accuracy and speed. Each bucket

records a flow ID key and the distribution of values using a

META. We use three distinct hash functions, h′
1(·), h′

2(·), and

h′
3(·), for the arrays. Additionally, a global META aggregates

the value distribution for all flows, serving as a fallback for

queries on unrecorded flows.

Insertion. When a new item e = 〈f, v〉 arrives, it’s first

added to the global META. We then try to insert e to the



h′
1(f)

th bucket of the first array. If this bucket is free or

already contains a flow with key = f , e is added to this

bucket’s META, setting key to f . Failing that, we move to

the h′
2(f)

th bucket of the second array, and if necessary, to

the h′
3(f)

th bucket of the third array. Should all arrays reject

e, it is discarded.

Query. To find a flow f , we check the h′
1(f)

th, h′
2(f)

th, and

h′
3(f)

th bucket of the respective arrays for a key = f . A

match returns the query from that bucket’s META; otherwise,

the global META provides the result.

3) Cuckoo Filter:
We devise another comparison framework based on Cuckoo

Filter [57]. Cuckoo Filter is an efficient hash table implemen-

tation based on cuckoo hashing [58], which can achieve both

high utilization and compactness. It records the fingerprint

instead of the flow ID to improve space efficiency.

The structure employs a table with buckets and three hash

functions, h1(·), h2(·), and hf (·), where each bucket records

a fingerprint fpc and the distribution of values using a META.

For an item e = 〈f, v〉, we determine fp = hf (f) and map

e to the [h1(fp)]
th and [h2(fp)]

th buckets. We then try to

locate one of these two buckets where fpc = fp and insert v
to the META in that bucket. If no matching bucket is found

but an empty bucket exists, we insert e to it by setting its

fpc = fp and inserting v to the META. If both buckets

are full, then one of the two flows in them will be evicted

to its alternate bucket (because each flow has two mapped

buckets). This random eviction continues until an empty

bucket is found or a preset maximum number of attempts,

MAX NUMBER OF TURNS, is reached. If that happens, we

discard this item. Like what we do in the straw-man solution, a

global META is maintained as a fallback for queries. We chose

MAX NUMBER OF TURNS = 8 and 32-bit fp to minimize

collisions, as increasing MAX NUMBER OF TURNS beyond

this point does not significantly enhance accuracy but does

reduce throughput.

4) Datasets:

1) CAIDA Dataset. This dataset comprises streams of

anonymized IP items collected from high-speed monitors

by CAIDA in 2018 [48]. We use the trace with a

monitoring interval of 60s. Each item consists of a 5-

tuple (13 bytes). There are around 27M items and 1.3M

flows in this dataset.

2) MAWI Dataset. This dataset contains real traffic trace data

maintained by the MAWI Working Group [59]. Similar

to CAIDA, each item in the dataset is a 5-tuple. There are

around 9M items and 13K flows in the MAWI dataset.

5) Metrics:

1) ALE (Average Logarithm Error). We employ ALE to

evaluate the accuracy of quantile estimation for huge

and medium flows. Since the order magnitude of latency

may vary significantly, it is unreasonable to measure

the error by absolute value alone. We define ALE as
1
|Ψ|

∑
fi∈Ψ |log2ti− log2t̂i| = 1

|Ψ|
∑

fi∈Ψ |log2 ti
t̂i
|, where

Ψ represents the set of all huge and medium flows in

the data stream. ti and t̂i denote the real and estimated

quantile at a given percentage p.

2) RE (Relative Error). We employ RE to evaluate the

accuracy of quantile estimation for tiny flows. We define

RE as
|x̂max−xmax|

xmax
, where xmax and x̂max are the real

and estimated maximum value in a flow.

3) Throughput (Insertion and Query). We use million oper-

ations (insert an item or query a flow) per second (Mops)

to measure the throughput.

6) Default settings:
For M4, the memory ratio of L1, L2, L3, L4 is 3%, 60%,

35%, 2%, respectively. Each arriving item at every level is

mapped to 3 buckets (wi = 3, i ∈ {1, 2, 3, 4}). Each bucket

in L1 has 4 counter cells (c1 = 4) and 1 MX cell, and each

counter cell consists of 2 bits (l1 = 2). The number of levels

for M4 and the straw-man solution is set to 3, the number of

hash functions (w) in each layer is set to 3, and p = 0.5. The

parameter settings for DDSketch, t-digest, and mReqSketch

on different frameworks are shown in Table II.

B. Experiments of Huge and Medium Flows on Accuracy

Experiments on M4-DDSketch. As shown in Figure 6, the

experimental results show that the ALE of M4-DDSketch is

significantly lower than that of the comparison frameworks.

Specifically on the two real-world datasets, the ALEs of M4-

DDSketch are on average 1.80× and 2.26× lower than those

of the straw-man solution, and 1.45× and 1.42× lower than

Cuckoo Filter.

(a) ALE on CAIDA (b) ALE on MAWI

Fig. 6: Accuracy of M4-DDSketch.

Experiments on M4-t-digest. As shown in Figure 7, the

experimental results demonstrate that the ALE of M4-t-digest

is significantly lower than that of the comparison frameworks.

Specifically on the two real-world datasets, the ALEs of M4-t-

digest are on average 2.19× and 2.13× lower than those of the

straw-man solution, and 1.41× and 1.36× lower than Cuckoo

Filter.

(a) ALE on CAIDA (b) ALE on MAWI

Fig. 7: Accuracy of M4-t-digest.

Experiments on M4-mReqSketch. As shown in Figure 8,

the experimental results demonstrate that the ALE of M4-



mReqSketch is significantly lower than that of the comparison

frameworks. Specifically on the two real-world datasets, the

ALEs of M4-mReqSketch are on average 1.94× and 1.97×
lower than those of the straw-man solution, and 1.50× and

1.45× lower than Cuckoo Filter.

(a) ALE on CAIDA (b) ALE on MAWI

Fig. 8: Accuracy of M4-mReqSketch.

Analysis. The accuracy advantage in Figure 6-8 is established

by making better use of resources. First, the separation of

medium and huge flows brought by the SUM technique allows

for allocating fewer bits for medium flows. Furthermore, the

multi-layer structure prevents huge and medium flows from

contaminating each other. Otherwise, once a medium flow

collides with a huge one, its distribution will be utterly covered

up by the huge flow because of its size. Second, the MINIMUM
technique improves the algorithm’s robustness against hash

collisions.

C. Experiments of Tiny Flows on Accuracy

As shown in Figure 9, the experimental results demonstrate

that for most tiny flows, the maximum value can be well

estimated by M4, which significantly outperforms the two

comparison frameworks. Specifically on the two real-world

datasets, M4 attains an error-free (i.e., RE = 0) rate of 84.5%

and 89.1%, while the comparison frameworks offer almost no

error-free estimates.

(a) CAIDA (b) MAWI

Fig. 9: RE distribution of tiny flows on different datasets.

Tiny flows are too small to well-define a distribution. Using

METAs to record tiny flows would be inaccurate and memory-

consuming. Hence, only recording the maximum value gives

us significantly better results than two comparison frame-

works.

D. Experiments on Speed

We conduct experiments on the speed of M4 and two

comparison frameworks on different datasets.

Insertion Throughput. As shown in Figure 10, the experi-

ment results demonstrate that the insertion throughput of M4 is

at the same level with the comparison frameworks. Specifically

(a) CAIDA. (b) MAWI

Fig. 10: Insertion throughput on different datasets.

(a) CAIDA (b) MAWI

Fig. 11: Query throughput on different datasets.

on the two real-world datasets, the insertion throughput of M4

is on average 0.80× and 0.71× of those of the straw-man

solution, and 1.30× and 1.16× of Cuckoo Filter.

Query Throughput. As shown in Figure 11, the experiment

results demonstrate that the query throughput of M4 is at the

same level with the comparison frameworks. Specifically on

the two real-world datasets, the query throughput of M4 is on

average 0.83× and 0.89× of those of the straw-man solution,

and 0.92× and 1.00× of Cuckoo Filter.

Analysis. The experiments show that the throughput of M4

in insertion and query is slightly lower than that of the

comparison frameworks. This is because our solution contains

more layers. Besides, MINIMUM and SUM operations

take extra time.

VI. CONCLUSION

This paper introduces the M4 framework designed to enable

per-flow quantile estimation using single-flow estimation algo-

rithms. The key techniques of M4 are MINIMUM, employed

for minimization of the noise caused by hash collisions, and

SUM, employed for efficient flow categorization based on their

sizes and customized treatment strategies. The experimental

results indicate that M4 outperforms two comparison frame-

works in estimating the value distribution of huge, medium,

and tiny flows. We have made our code publicly available on

GitHub [49] to facilitate further research and application in

this field.
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