
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023 12887

OneSketch: A Generic and Accurate
Sketch for Data Streams

Zhuochen Fan , Ruixin Wang , Yalun Cai , Ruwen Zhang , Tong Yang , Member, IEEE, Yuhan Wu ,
Bin Cui , Senior Member, IEEE, and Steve Uhlig

Abstract—In this paper, we propose a generic sketch algorithm
capable of achieving more accuracy in the following five tasks:
finding top-k frequent items, finding heavy hitters, per-item fre-
quency estimation, and heavy changes in the time and spatial
dimension. The state-of-the-art (SOTA) sketch solution for multiple
measurement tasks is ElasticSketch (ES). However, the accuracy
of its frequency estimation has room for improvement. The reason
for this is that ES suffers from overestimation errors in the light
part, which introduces errors when querying both frequent and
infrequent items. To address these problems, we propose a generic
sketch, OneSketch, designed to minimize overestimation errors. To
achieve the design goal, we propose four key techniques, which
embrace hash collisions and minimize possible errors by handling
highly recurrent item replacements well. Experimental results
show that OneSketch clearly outperforms 12 SOTA schemes. For
example, compared with ES, OneSketch achieves more than 10×
lower Average Absolute Error on finding top-k frequent items and
heavy hitters, as well as 48.3% and 38.4% higher F1 Scores on two
heavy changes under 200 KB memory, respectively.

Index Terms—Data streams, sketch, frequency estimation, top-
k, heavy hitters, per-item, heavy changes.

I. INTRODUCTION

A. Background and Motivation

A PPROXIMATE stream processing has always been a pop-
ular topic in various areas such as databases [1], [2], [3],

[4], data mining [5], [6], [7], artificial intelligence [8], [9], [10],
[11], network measurement [12], [13], [14] and security [15],
[16], [17]. One of its most important and fundamental tasks

Manuscript received 16 January 2023; revised 4 May 2023; accepted 16 May
2023. Date of publication 19 May 2023; date of current version 8 November
2023. This work was supported in part by the Key-Area Research and Develop-
ment Program of Guangdong Province under Grant 2020B0101390001, and in
part by the National Natural Science Foundation of China (NSFC) under Grant
U20A20179. Recommended for acceptance by F. Rusu. (Zhuochen Fan, Ruixin
Wang, and Yalun Cai are co-primary authors.) (Corresponding author: Tong
Yang.)

Zhuochen Fan, Ruixin Wang, Yalun Cai, Ruwen Zhang, Yuhan Wu, and Bin
Cui are with the National Key Laboratory for Multimedia Information Process-
ing, School of Computer Science, Peking University, Beijing 100871, China
(e-mail: fanzc@pku.edu.cn; wang.ruixin@stu.pku.edu.cn; caiyalun@pku.edu.
cn; zrw@pku.edu.cn; yuhan.wu@pku.edu.cn; bin.cui@pku.edu.cn).

Tong Yang is with the National Key Laboratory for Multimedia Information
Processing, School of Computer Science, Peking University, Beijing 100871,
China, and also with the Peng Cheng Laboratory, Shenzhen 518066, China
(e-mail: yangtongemail@gmail.com).

Steve Uhlig is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, E1 4NS London, U.K. (e-mail:
steve.uhlig@qmul.ac.uk).

Digital Object Identifier 10.1109/TKDE.2023.3278028

is frequency estimation, which aims to accurately estimate the
number of occurrences of a given item in data streams. Fre-
quency estimation can generally be divided into estimation for
frequent-item and per-item. Among them, frequent-item estima-
tion can be further summarized as finding top-k items (Task 1)
and heavy hitters (Task 2). The former finds the k items with
the largest frequency, and the latter finds items whose frequency
exceeds a predefined threshold. Per-item estimation (Task 3)
on the other hand focuses on estimating the frequencies of all
items. Two other tasks, the time dimension heavy changes and
the spatial dimension heavy changes, are also important and
are related to frequency estimation. Heavy changes in the time
dimension (Task 4) refers to items whose frequencies in two
adjacent time windows increase/decrease beyond a predefined
threshold. Heavy changes in the spatial dimension (Task 5) is
a new problem that we define for the first time, which refers
to items whose frequencies in two adjacent physical nodes in-
crease/decrease beyond a predefined threshold. It can be used for
packet loss detection in networks, but has rarely been formally
studied. Sketch, a compact data structure with small memory
footprint and error, has been widely recognized by the research
community [18], [19], [20], [21], especially in addressing the
above tasks 1 to 4. Thus, our design goal is to propose a generic
sketch algorithm that can more accurately perform the above
five tasks.

B. Prior Art and Limitations

The distribution of data streams is highly skewed [22], [23],
[24], i.e., only a few items appear frequently (called frequent
items), while most items appear only once or a few times (called
infrequent items). Thus, researchers naturally pay more attention
to frequent items and put forward many excellent works. The key
idea of the most state-of-the-art (SOTA) sketch-based solutions,
such as ElasticSketch (ES) [14], [25], MV-Sketch [26], Cold
filter (CF) [27] and its successor LogLog Filter (LLF) [28],
etc., is to separate frequent items from infrequent items, and
accurately record frequent items. Among them, ES is the most
compelling: it handles multiple measurement tasks, including
tasks 1 to 4, and offers a high level of accuracy.

While ES performs well, it has two obvious problems that
cause inaccurate recording of frequent and infrequent items. ES
has a heavy part and a light part, which record the frequencies
of frequent and infrequent items, respectively. The heavy part
records the support votes and negative votes for each item,

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0002-5236-2228
https://orcid.org/0009-0003-8784-1178
https://orcid.org/0000-0002-6102-9195
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0001-7115-5390
https://orcid.org/0000-0003-1681-4677
https://orcid.org/0000-0001-6251-6836
mailto:fanzc@pku.edu.cn
mailto:wang.ruixin@stu.pku.edu.cn
mailto:caiyalun@pku.edu.cn
mailto:caiyalun@pku.edu.cn
mailto:zrw@pku.edu.cn
mailto:yuhan.wu@pku.edu.cn
mailto:bin.cui@pku.edu.cn
mailto:yangtongemail@gmail.com
mailto:steve.uhlig@qmul.ac.uk

12888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

representing the frequency of the item and the frequency of
other items (i.e., caused by hash collisions), respectively. Once
a new item arrives and the ratio of negative votes exceeds a
threshold, the original item is expelled to the light part, i.e., an
item replacement occurs. When querying the item frequency,
for any item that is not in the heavy part, its frequency is
reported by the light part. For any item in the heavy part, if item
replacement has occurred in the past, the sum of the frequencies
of two parts is reported. However, since the frequency of frequent
items recorded in the light part is likely to introduce errors due
to hash collisions, the final reported frequency must also have
errors. Further, coupled with the fact that the light part uses a
large-size counter to record infrequent items, it leads to a large
memory overhead and serious overestimation errors in the light
part.

C. Our Proposed Solution

To achieve higher accuracy, we propose a novel sketch algo-
rithm called OneSketch, whose name ONE is inspired by two
aspects: the measurement of five tasks can be realized using just
one sketch, and the design philosophy is one-sided approaching
(explain later). The accuracy of OneSketch in these five tasks is
better than that of ES and other SOTA schemes: 1) For Task 1,
the Average Relative Error (ARE) of OneSketch is on average
10.9× and 56.0× lower than that of ES and LLF, respectively. 2)
For Task 2, the Average Relative Error (ARE) of OneSketch is
on average 5.3× and 17.4× lower than that of ES and LLF,
respectively. 3) For Task 3, OneSketch achieves 36.0% and
82.3% higher F1 Score than that of ES and LLF under 200 KB
of memory, respectively. 4) For Task 4, OneSketch achieves
48.3% and 72.4% higher F1 Score than that of ES and LLF
under 200 KB of memory, respectively. 5) For Task 5, OneSketch
achieves 38.4% and 67.9% higher F1 Score than that of ES and
LLF under 200 KB of memory, respectively.

OneSketch inherits the ES idea of separating frequent and
infrequent items, and its data structure also consists of two parts,
a heavy part and a light part, which are used to accurately record
the frequencies of frequent items and other infrequent items,
respectively. The key design philosophy of OneSketch is Over-
estimation Control: reduce the overestimated frequency of items,
by approaching the true frequency on one side. We propose four
techniques around the above design philosophy that embrace the
reality of hash collisions and minimize overestimation errors in
terms of extremely recurrent item replacements.

The key technique for the light part is called Fine-Grained
Control, which replaces the light part of ES from CM [29] to a
tailored TowerSketch [30], exploiting its small-size counters to
record infrequent items at a finer granularity and reduce memory
overhead. This technique optimizes the accuracy of ES light part
from the data structure.

The key technique of interaction between the light part and the
heavy part is called Frequency Read/Write Control and Repeat
Control. 1) The key idea of the former is that after each item
replacement in the heavy part, the new challenger item that
succeeds in the item replacement should immediately read its
frequency recorded in the light part. The goal is to avoid possible
overestimation errors in the light part due to hash collisions in

the future. This is the main strength of OneSketch to address the
overestimation errors generated by ES mentioned in Section I-B.
Similarly, the light part should also write the frequency of
the kicked item. 2) Whenever Frequency Read/Write Control
occurs, the item frequency is recorded in the heavy/light part,
but this process is reversible, i.e., an item may be transferred
repeatedly between heavy and light parts. As a result, if the pro-
cess of Frequency Read/Write Control happens to an item many
times, its estimated value in the light part will be accumulated
repeatedly. Thus, our Repeat Control reduces the overestimation
errors caused by above-mentioned issue, to further optimize
Frequency Read/Write Control again.

The key technique for the heavy part is called Replacement
Control, and the main idea is that we should control meaningless
item replacement by comparing the minimum frequency of
the mapped bucket in the heavy part with the read value of
the new challenger item in the light part. This conservative
technique eliminates the errors caused by the possible overflow
of infrequent items in the light part, to further improve Frequency
Read/Write Control.

The above techniques significantly reduce the overestimation
errors of ES. More details are provided in Section III. Further,
we develop a rigorous mathematical analysis for OneSketch
to theoretically derive its error bounds in Section IV. Finally,
we conduct extensive experiments, comparing OneSketch with
12 sketch-based SOTA schemes in Section V to verify its
effectiveness. The experimental results show that OneSketch
enables more accurate measurements in five important tasks
in data streams. All related codes of OneSketch are provided
open-source and available at GitHub [31]1.

Main Contributions:
1) We propose a new measurement task called heavy changes

in the spatial dimension, which has important applications
but has rarely been studied.

2) We propose OneSketch, which is generic for five tasks and
more accurate than other SOTA solutions.

3) We theoretically derive the error bound for OneSketch
through rigorous mathematical analysis.

4) We perform extensive experiments, and the results validate
that OneSketch is generic and more accurate.

II. RELATED WORK

In this section, we divide sketches for frequency estimation
into per-item estimation and frequent-item estimation.

A. Per-Item Estimation

These sketches are designed to record the frequencies of all
items. Typical algorithms include Count-Min sketch (CM) [29]
and Conservative Update sketch (CU) [32]. A CM consists of
d arrays Ai(1 ≤ i ≤ d), where Ai is associated with a hash
function hi(.), and each array has w counters. When inserting
an item e, it increments the d hashed counter Ai[hi(e)] by 1.
To report the frequency of e, it only reports the smallest one
among the d hashed counters Ai[hi(e)]. The CU is very similar
to the CM, except that it only increments the minimum counter(s)

1https://github.com/pkufzc/OneSketch

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/pkufzc/OneSketch

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12889

among the d hashed counters for each insertion. They both
suffer from overestimation errors due to hash collisions. Other
well-known schemes include sketches of Count (C) [33] and
CSM [34].

SALSA [20] first uses small counters and accurately indicates
the merging of adjacent counters when they overflow by complex
operations with an additional bitmap, achieving high accuracy
but sacrificing speed. It can be extended in CM, CU, and C
versions. FCM-Sketch (FCMS) [35] and TowerSketch [30] both
consist of several counter arrays. They use different-sized coun-
ters for different arrays, but each array is allocated the same
amount of memory. Hence, the higher-level arrays have fewer
counters, but their counters are larger. In this way, frequent items
overflow in lower-level counters, so their frequencies are kept
in higher-level/large counters, whereas the frequencies of infre-
quent items are kept in lower-level/small counters. FCMS tries
its best to avoid counter overflow, and must rely on the existing
schemes (e.g., ES [14]) to achieve high accuracy in finding
top-k frequent items. TowerSketch handles overflow well and
can achieve high accuracy without requiring the cooperation
of existing SOTA scheme. TowerSketch supports both CM and
CU insertion, and we utilize the CU version of TowerSketch
(denoted as Tower_CU) and redesign its insertion strategy in
this paper.

B. Frequent-Item Estimation

Typical sketches include Misra-Gries sketch (MG) [36],
Space-Saving (SS) [37], Unbiased Space-Saving (USS) [38],
and ASketch (AS) [39]. As a pioneering work, when a new/non-
recorded item arrives but the data structure is full, MG directly
decrements the frequency of all recorded items by 1. It inspires
many works such as SS and FD [40], but its replacement
strategy will lose a lot of infrequent items and lead to a very
low recall rate. SS and USS both use a data structure named
Stream-Summary to record frequent items. Unlike MG, SS
directly replaces the least frequent item with this new item,
while USS utilizes probabilistic replacement to achieve unbi-
ased estimation. AS uses a small array to record only a few
frequent items and a sketch (e.g., CM, C, FCM [41]) to record
infrequent items, without guaranteeing the actual demand in
terms of the total number of frequent items or the processing
speed.

SOTA sketches include UnivMon (UM) [42], ElasticSketch
(ES) [14], [25], MV-Sketch (MV) [26], [43], Cold filter (CF) [27]
and its successor LogLog Filter (LLF) [28], etc. UM is the
first universal sketch to address multiple measurement tasks
with a single data structure, based on the key idea of universal
streaming [44] It first recursively samples the data stream to
obtain several sub-streams, and uses C and heap to record
each sub-stream. However, its actual accuracy is not satis-
factory enough, and its sampling results in slow processing
speed.

ES separates frequent items from infrequent items through a
voting expulsion mechanism. ES consists of two parts: a heavy
part records frequent items, and a light part records infrequent
items. The heavy part is a hash table, where each bucket records
the following item information: item ID, support vote, negative

vote, and flag. Support vote records the frequency of this item.
Negative vote records the frequency of other items. The flag
indicates whether the light part is likely to contain support votes
for this item, where the light part is a CM. When inserting an
new item, if it differs from the item in the mapped bucket, it
increments the negative vote, and calculates whether the ratio
of the negative votes exceeds a predefined threshold. If so, the
recorded item in the bucket is evicted to the light part. When
querying an item, for any item that is not in the heavy part, its
frequency is reported by the light part. For any item in the heavy
part, there are two cases: 1) if the flag is false, then its frequency
is the corresponding support vote; 2) if the flag is true, then its
frequency is the sum of support vote and query result in the light
part.

CF first uses a two-layer CU to record the frequency of all
items, and then sets a predefined threshold to separate frequent
items from infrequent items. When inserting an item, CF first
inserts it into the CU and queries its frequency. If the frequency
exceeds the threshold, the item will be reported as a frequent
item. To expand the filtering range of CF, LLF replaces CU with
the LogLog structure [45], [46], [47], which is originally used
for cardinality (i.e., the number of distinct items) estimation. Its
data structure is an array of registers associated with a random
generator and several hash functions. When inserting an item,
LLF first calculates the hash functions to map the corresponding
register, and determines whether it is an infrequent item. If
the answer is positive, LLF generates random numbers, which
follow a geometric distribution, and then updates the associated
registers.

The structure of MV-Sketch (MV) [26], [43] is similar to that
of CM. The three fields recorded in each bucket are: the sum of
all item hashed to this bucket, the heavy (our Task 2&4) item
candidates (candidates for short) in the current bucket, and the
count value of the candidates in the current bucket. When an
item is mapped to a bucket, MV uses MJRTY algorithm [48] to
update the candidate. When querying an item, MV determines
the estimated value based on whether the new item is consistent
with the candidate, and returns the minimum estimated value.
Finally, MV reports heavy items based on whether they are
greater than the set threshold.

III. ONESKETCH DESIGN

In this section, we first present the data structure of OneSketch
in Section III-A. Then, we introduce the design philosophy
and four techniques of OneSketch in Section III-B. Next, we
introduce the operations of the Light Part in Section III-C, as a
prerequisite for the subsequent OneSketch operations. Finally,
we describe the specific operations of OneSketch for find-
ing top-k frequent items and per-item frequency estimation in
Sections III-D and III-E, respectively. The symbols frequently
used in this paper are shown in Table I.

A. The OneSketch Structure

As shown in Fig. 1, OneSketch consists of two part: a Heavy
Part and a Light Part, which are designed to accurately record
the frequencies of top-k items and infrequent items, respectively.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

12890 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

TABLE I
SYMBOLS FREQUENTLY USED IN THIS PAPER

Fig. 1. Data structure and examples of OneSketch.

The Heavy Part is a hash table with n buckets B[1], B[2], . . .,
B[n], and associated with the hash function h(.). Each bucket
consists of d cells, each of which stores two fields: item ID (key)
and its count CH . For convenience, we use B[i][j] to represent
the jth cell in the ith bucket.

The Light Part is a tailored Tower_CU [30] (see Section II-A).
Each Tower_CU has two arrays: A[1] with 2 ∗ w 2-bit counters
and A[2] with w 4-bit counters, each of which is associated with
a pair-wisely independent hash function gs(.) (s = 1 or 2). Each
counter only records the count value of the item. Therefore, the
2-bit counter will overflow if the count exceeds 3, and the 4-bit
counter will overflow if the count exceeds 15. For convenience,
we use A[s][t] to represent the tth counter in the sth array.

B. Design Philosophy and Techniques

The design philosophy of OneSketch is Overestimation Con-
trol, i.e., reducing the overestimated frequency as much as pos-
sible to approach the real frequency on the premise of ensuring
overestimation. Towards the design goal, we propose four key
techniques as follows.

1) Fine-Grained Control (Light): We find that the 8-bit coun-
ters used in ES can be further compressed to 2-bit or

4-bit, resulting in 2 ∼ 4 times more counters with the same
space, which means 2 ∼ 4 times fewer hash collisions and
errors. By combining the lower half of TowerSketch [30]
with our proposed techniques, we achieve the aforemen-
tioned counter compression without significant additional
overflow errors.

2) Frequency Read/Write Control (Heavy&Light): When
each item replacement occurs in the Heavy Part, the new
item that succeeds in the item replacement should imme-
diately Read (merge) its frequency recorded in the Light
Part and set it as the original value in the Heavy Part.
This technique avoids possible overestimation errors in
the Light Part due to hash collisions as soon as possible
in the future, and essentially addresses well the sources of
error in ES as described in Section I-B. Accordingly, the
Light Part should also be writtenwith the frequency of
the least frequent item that is kicked from the Heavy Part.

3) Repeat Control (Heavy&Light): Followed by the above
Frequency Read/Write Control technique, the item may
go through the process of being written/kicked to the
Light Part first, read back to the Heavy Part and then
written/kicked to the Light Part again, which will cause
the issue of repeated accumulations in the Light Part.
Therefore, we improve the insertion algorithm of the Light
Part, which only records the maximum value between
written/kicked value and counter value to avoid repeated
writing in the Light Part in order to further reduce over-
estimation errors when using the Frequency Read/Write
Control technique.

4) Replacement Control (Heavy): We observe that, if the
Read value of the Light Part does not overflow and is less
than the least frequent item in the Heavy Part, replacement
is meaningless and wasteful. Thereafter, unlike the one-
step replacement decision in SOTA scheme, we propose
the first double-check replacement strategy.

C. Design of Light Part

1) Insertion of Light Part: Rationale: Thanks to our Fre-
quency Read/Write Control technique (detailed later), an item
ends up only in the Heavy Part or in the Light Part, not both.
When Frequency Read/Write Control occurs, although the es-
timated value in the Light Part is merged to the Heavy Part,
there is still a backup in the Light Part. It means that the
estimated value in the Light Part will be repeatedly accumu-
lated if item replacement and further Frequency Read/Write
Control occur several times for an item. For example, assum-
ing that the replacement path of item e is Heavy Part →
Light Part → Heavy Part → Light Part, when the second
time Heavy Part → Light Part (item replacement) occurs,
CH of item e includes CL queried in the last Light Part →
Heavy Part (Frequency Read/Write Control) procedure. Thus
the second occurrence of Heavy Part → Light Part will re-
sult in twice repeated accumulations for CL. As a consequence,
N occurrences of item replacements will result in N times
repeated accumulations, leading to large overestimation in the
Light Part.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12891

To address this problem effectively, we propose a new
technique called Repeat Control. The goal is to reduce
the overestimation of OneSketch by optimizing the tradi-
tional insertion strategy of Tower_CU, which updates the
count value of each counter to min{max{A[i][gi(e)], CL +
C}, 2δ − 1}(i = 1, 2). Our optimized insertion strategy works
as follows: when inserting an item e with the count value
C, if C is equal to 1, we just increment the smallest
counter(s) that are not overflowed by 1 using CU [32] inser-
tion strategy. Otherwise, we update the count value of each
counter to min{max{A[i][gi(e)],max{CL, C}}, 2δ − 1}(i =
1, 2). Using max{CL, C} instead of CL + C means that there
is no need to update if the count value C is less than CL, which
will lead to a more tightly overestimated value.

It should be noted that, if a δ-bit counter overflows after
the update, we will set its value to 2δ − 1 and regard it as an
overflowed counter. For an overflowed counter, we consider its
count value as +∞, which cannot be incremented. It means that
the maximum value of a δ-bit counter is 2δ − 2.

2) Query of Light Part: The query procedure of the Light Part
returns the minimum value of the hashed counters A[s][gs(e)].
Note that the value of an overflowed counter is +∞. If all
counters in the Light Part are overflowed, it will return 15 and
the query value CL will be regarded as an overflowed value.

D. Operations (Top-K Version)

1) Insertion of OneSketch: The pseudo-code of the insertion
procedure is shown in Algorithm 1. Note that Replace-
forTopK(e) (Algorithm 2) is the top-k version of the item
replacement procedure shown in this section, while Replace-
forPerItem(e) (Algorithm 3) is the per-item version in
Section III-E.

Initially, all ID fields are set to null, and all count fields are
set to 0. Given an incoming item with ID e, it is first mapped
to the bucket B[h(e)] in the Heavy Part by computing the hash
function h(e) (1 ≤ h(e) ≤ n). According to the information of
B[h(e)], there are three cases as follows.

Case 1: e is in one cell of B[h(e)]. OneSketch increments the
count field CH in the cell by 1.

Case 2: e is not in B[h(e)], but there is at least one empty cell
in B[h(e)]. OneSketch inserts e into an arbitrary empty cell, and
sets the ID field to e and sets CH to 1.

Case 3: e is not in B[h(e)], and there is no empty cell.
OneSketch tries to replace the item e′ with the minimum count
value C ′

H in B[h(e)] with probability P = 1
C ′

H+1 (equation
from [49]). There are two sub-cases:

1© If the probability condition does not hold, e no longer
replaces e′, but is inserted into the Light Part.

2© If the probability condition holds, e successfully replaces
e′. OneSketch sets the ID field to e, and evicts e′. Then, we pro-
pose a novel technique for the challenge-successful item e called
Frequency Read/Write Control, to avoid possible overestimation
errors in the Light Part due to hash collisions in the future and
accurately estimate the item e. OneSketch queries the count of
e in the Light Part: it reports CL among the hashed counters
A[s][gs(e)], then sets the CH of e in the Heavy Part to CL + 1.

Algorithm 1: Insertion of OneSketch.

Algorithm 2: ReplaceforTopK(e).

OneSketch also inserts the evicted item e′ and its C ′
H into the

Light Part.
Example 1: (Fig. 1) (1) For incoming item e1, OneSketch

maps it to bucket B[h(e1)]. Since there is a cell storing e1,
OneSketch increments its count from 6 to 7. (2) For incoming
item e3, OneSketch maps it to bucket B[h(e3)]. Since e3 does
not exist in B[h(e3)], but there is still an empty cell in B[h(e3)],
OneSketch sets the ID field of the empty cell to e3, and sets the
count field to 1. (3) For incoming item e7, OneSketch maps it
to bucket B[h(e7)]. e7 does not exist in B[h(e7)], and there is
no empty cell. Therefore, OneSketch tries to replace the least
frequent item e6 with e7 with probability P = 1

4+1 = 0.2. We
assume that the probability condition holds, so e7 successfully
replaces e6. OneSketch sets the ID field to e7 and the count field
as follows: OneSketch maps e7 to the counters A[1][g1(e7)] and
A[2][g2(e7)], and reports the minimum value of 2 between them.
Thus, the count field is set to 2 + 1 = 3.

2) Query of OneSketch: Since the item ends up only in the
Heavy Part or Light Part, the error introduced by the back-and-
forth passing of the counts in the two parts as in ES is completely
avoided, and the procedure of insertion and query are simplified.
To query an item e, OneSketch first checks the Heavy Part in
bucket B[h(e)]. If e matches a cell in B[h(e)], it reports the
corresponding count CH . If e matches no cell, it reports CL

among the hashed counters A[s][gs(e)] in the light part.

E. Operations (Per-Item Version)

Note that the operations in this section are only applicable to
per-item frequency estimation, and we only show the description
of Case 3 (sub-case 2©), which is different from the operations
of top-k version in Section III-D1. The pseudo-code of the item
replacement procedure optimized in this section is shown in
Algorithm 3.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

12892 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Algorithm 3: ReplaceforPerItem(e).

2© If the probability condition holds, OneSketch first applies
the partial Frequency Read/Write Control technique to query
the count of e in the Light Part: it reports CL among the hashed
countersA[s][gs(e)]. Then, we propose another novel technique,
called Replacement Control, to avoid meaningless item replace-
ment. Specifically, OneSketch checks the value of CL: if CL

is not overflowed and less than C ′
H , it is considered that e has

not successfully replaced e′, and the remaining operations are
the same as Case 3 (sub-case 1©) in Section III-D1; otherwise,
e successfully replaces e′. OneSketch sets the ID field to e,
and evicts e′: OneSketch sets the CH of e in the Heavy Part
to max{CL, C

′
H}+ 1. Further, OneSketch inserts the evicted

item e′ and its C ′
H into the Light Part.

Example 2: This example is an extended version of Example
1-(3) based on the above operations, and we still assume that the
probability condition holds. (1) We assume: A[1][g1(e7)] = 2,
A[2][g2(e7)] = 6 and C ′

H = 4. Since CL, equal to 2, has not
overflowed and is less than C ′

H , e7 will still not replace e6
although the probability condition holds. Instead, we insert e7
into the Light Part directly. (2) We assume: A[1][g1(e7)] = 3,
A[2][g2(e7)] = 15 and C ′

H = 4. Since A[s][gs(e7)] both over-
flow and CL is equal to 15, e7 successfully replaces e6. Then,
OneSketch sets the ID field to e7 and the count field to 15 + 1 =
16. Further, OneSketch inserts the evicted item e6 and its C ′

H

into the Light Part.

IV. MATHEMATICAL ANALYSIS

In this section, we propose the mathematical analysis of
OneSketch. We limit our results to the top-k version. First,
we present a theorem about the query results of the Light Part
in Section IV-B. We derive the formula of the error bound in
Section IV-C.

A. Preliminary

Let S = {e1, e2, . . . , eT } be a data stream that contains T
items, where et ∈ {1, 2, . . . ,m} appears at time t. Let fi be
the frequency of item i in the entire data stream S and f(i,t) =∑t

k=1 1{ek=i} be the frequency of item i at time t, we have
fi = f(i,T). At time t, define τ(i, t) ∈ [0, t] as the last time
item i was not stored in the Heavy Part, i.e., τ(i, t) + 1 was
the last time when item i successfully replaced another item
and was inserted into the Heavy Part or τ(i, t) = t if item i
was not stored in the Heavy Part. Here we let f(i,0) = 0 and

if the item was always stored in the Heavy Part, τ(i, t) = 0.
Then, we let H(i,t) = f(i,t) − f(i,τ(i,t)) be the number of items
inserted into the Heavy Part with ID i between τ(i, t) and t
(note that H(i,t)
= 0 if and only if item i is stored in the Heavy
Part at time t), let L(i,t) = f(i,t) −H(i,t) be the number of items

inserted into the Light Part with ID i at time t and let L̂(i,t) be the
query value of the light part. In the top-k version of OneSketch,
we have CH = H(i,t) + L̂(i,τ(i,t)), L(i,t) = L(i,τ(i,t)). There-
fore, let Hi = H(i,T), ti = τ(i, T), the true frequency of item i
can be written as

fi = Hi + L(i,ti)

and the estimated frequency can be written as

f̂i = Hi + L̂(i,ti)

Note that according to the above analysis, the estimation error
of OneSketch only comes from the Light Part.

B. Properties of the Light Part

Based on Section III, the Light Part is Tower_CU. Suppose
that the Light Part contains l arrays. The ith array haswi counters
and each counter consists of δi bits. We have 0 = δ0 < δ1 <
· · · < δl, w1 > w2 > · · · > wl. Based on the above definition,
we have the following theorem about the query result of the
Light Part:

Theorem IV.1: In the top-k version of OneSketch, for
∀i, t, if L(i,t) < 2δl − 1, then no under-estimation er-
ror occurs at time t and ∀k ∈ [1, l], L(i,t) � A[k][gk(i)] �∑m

j=1 Igk(i)=gk(j)L(j,t), (L̂(i,t) = minlk=1 A[k][gk(i)]). Here,
we denote

∑m
j=1 Igk(i)=gk(j)L(j,t) as C.

Proof: For an arbitrary item i, assume that for ∀t <
Ti, L(i,t) < 2δl − 1. We prove that the theorem holds at any
point in time t < Ti through induction. Given a mapped counter
A[k][gk(i)], with some other items mapped to this counter.
Initially, item i is not in the Light Part and all the corresponding
expressions in the inequality are 0, so the theorem holds. At any
point in time t, there are five cases as follows.

Case 1: An item was inserted into the Heavy Part. we can
deduce thatL(i,t),A[k][gk(i)], C stays the same and the theorem
holds.

Case 2: An item j
= i was inserted into the Light Part. If
gk(i)
= gk(j), then as for Case 1, the theorem holds. Otherwise,
C = C + 1 andA[k][gk(i)] increases at most by 1, therefore the
theorem holds.

Case 3: An item i was inserted into the Light Part. We have
L(i,t) = L(i,t−1) + 1, C = C + 1, according to the properties
of the CU insertion, A[k][gk(i)] increases by 1 or L(i,t−1) �
minlk=1 A[k][gk(i)] < A[k][gk(i)], so L(i,t) � A[k][gk(i)] and
the theorem holds.

Case 4: An item j
= i was evicted from the Heavy
Part after et
= j arrives. If gk(j)
= gk(i), the theo-
rem holds, otherwise the insertion in the Light Part is
equivalent to max(C ′

H − CL, 0), therefore L(i,t) stays the
same, A[k][gk(i)] becomes max(C ′

H ,A[k][gk(i)]) and C =

C +H(j,t). Since C ′
H = L̂(j,τ(j,t)) +H(j,t), A[k][gk(i)] =

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12893

A[k][gk(j)] � L̂(j,t−1) � L̂(j,τ(j,t)) we can deduce that C ′
H −

A[k][gk(i)] = L̂(j,τ(j,t)) −A[k][gk(i)] +H(j,t) � H(j,t), and
A[k][gk(i)] increases at most by H(j,t). Therefore the theorem
holds.

Case 5: Item i was evicted from the Heavy Part after
et
= j arrives. This case is similar to Case 4 except
L(i,t) = L(i,t−1) +H(i,t). Since no item i was inserted into the
Light Part between τ(i, t) and t, we have C +H(i,t) �
max(C ′

H ,A[k][gk(i)]) � C ′
H = L̂(i,τ(i,t−1)) +H(i,t) �

L(i,τ(i,t−1)) +H(i,t) = L(i,t−1) +H(i,t) = L(i,t), therefore
the theorem holds.

In summary, the theorem holds at any point of time t < Ti.�
Note that based on the CU version of TowerSketch and our

insertion strategy, the Light Part reports better result than the
Tower_CU. Also, at any time t for any item i, if Tower_CU
does not overflow and we only consider those items inserted into
the Light Part, the query result is better than the CM version of
TowerSketch with the same amount of counters in each layer.

C. Error Bound

Theorem IV.2: In the top-k version of OneSketch, for ∀i,
given an arbitrary positive number ε, suppose u satisfies 2δu−1 −
1 � L(i,ti) < 2δu − 1(1 � u � l, and u = l + 1 if L(i,ti) �
2δl − 1), we have

Pr{f̂i � fi + ε} � 1−Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ε)wk

Proof: According to Section IV-A, we have

Pr{f̂i � fi + ε} = Pr{L̂(i,ti) � L(i,ti) + ε}
If L(i,ti) � 2δl − 1, then L̂(i,ti) = 2δl − 1 and the above

probability becomes 1, therefore the theorem holds. Next we
assume that the Light Part does not overflow and ε satisfies
L(i,ti) + ε � 2δl − 1

We define an indicator variable Ii,k,j as

Ii,k,j =

{
1, gk(i) = gk(j) ∧ i
= j
0, otherwise

As the l hash functions are independent from each other, we
have:

E(Ii,k,j) = Pr{gk(i) = gk(j)} =
1

wk

Based on the analysis in Section IV-B, at time ti, we define
another variable Xi,k =

∑m
j=1 L(j,ti) · Ii,k,j indicating an up-

per bound of the over-estimation error caused by hash collisions
in counter A[k][gk(i)]. Here we only need to consider k � u
since L(i,ti) � 2δu−1 − 1, and we have

A[k][gk(i)] � L(i,ti) +Xi,k

E(Xi,k) = E(
m∑
j=1

L(j,ti) · Ii,k,j)

=

m∑
j=1

L(j,ti) · E(Ii,k,j) =

∑m
j=1 L(j,ti)

wk

Therefore, according to the Markov inequality:

Pr{L̂(i,ti) � L(i,ti) + ε}
= Pr{∀k � u,A[k][gk(i)] � L(i,ti) + ε}
= Πl

k=u Pr{A[k][gk(i)] � min(2δk − 1, L(i,ti) + ε)}
� Πl

k=u Pr{Xi,k � min(2δk − L(i,ti) − 1, ε)}

� Πl
k=u

E(Xi,k)

min(2δk − L(i,ti) − 1, ε)

� Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ε)wk

Therefore, we have

Pr{f̂i � fi + ε} � 1−Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ε)wk

Note that according to Section III, in the Light Part of
OneSketch, we have l = 2, δ1 = 2, δ2 = 4, w1 = 2 ∗ w,w2 =
w. Then, based on the above theorem we can conclude that with
high probability, the over-estimation error of frequent items is
less than ε (at most 15). Therefore, the relative error is very small,
since the true frequency of a frequent item is usually large. For
example, the frequency of the top 2000 items in the IP Trace
Dataset we used for experiments in Section V is greater than
1000.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Implementation: We implement OneSketch and all other al-
gorithms in C++. The hash functions are implemented using the
32-bit Bob Hash (obtained from the open-source website [50])
with different initial seeds. We list these 12 SOTA schemes and
number them as follows: [S1] ES [14], [25]; [S2] MV [26], [43];
[S3] USS [38]; [S4] SS [37]; [S5] CM [29]; [S6] CU [32]; [S7]
AS [39]; [S8] SALSA [20]; [S9] LLF [28]; [S10] FCMS [35];
[S11] C [33]; [S12] UM [42].

Algorithm Configuration: For OneSketch, the Heavy Part is
array of buckets. Each bucket includes 8 cells and each cell has
ID field and count field. The memory ratio of the Heavy Part and
the Light Part is 4:1 for the top-k version and 1:4 for the per-item
version. We use the per-item version for per-item frequency
estimation and top-k version for the other four tasks. For ES,
the heavy part is an array of buckets. Each bucket includes a
vote- field and 8 cells. Each cell has ID field, count field and flag
field. The light part is an array of 8-bit counters. The memory
ratio of the heavy part and the light part is 1:3. For MV, we fix
r = 4 and vary w according to the specified memory size. For
USS and SS, the storage memory of each bucket is 100B and
the number of buckets is determined by the memory size. For
CM/CU/C, the number of array is 3. We use single CM/CU/C for
per-item frequency estimation, and CM/CU/C with a minheap
(CM/CU/C+heap) for the other four tasks which allocates 25%
memory for sketch and 75% memory for minheap. The minheap
is responsible for maintaining frequent items. For each item in

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

12894 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

the insertion process, if its frequency in CM/CU/C is larger than
the minimum value of minheap, this item will be inserted into
minheap. For AS, the filter includes 32 buckets and the rest of
memory is for CM. Each bucket has ID field, new_count field
and old_count field. For SALSA, we use the CM version. We set
d = 4 and pick s = 8 bit counters as the default configuration.
For LLF, we leverage CU and allocate 75% memory for it. We
give 4 bits for each register, set the number of hash functions
as 3 and threshold as 5. For FCMS, we use single FCM-Sketch
(FCMS) for per-item frequency estimation, and FCM-Sketch
with ES (FCMS+ES) for the other four tasks. We use configura-
tions recommended by authors. For UM, we set the number of
levels to 2.

Computation Platform: We conduct all the experiments on a
18-core CPU server (Intel i9-10980XE) with 128 GB memory
and 24.75 MB L3 cache.

Datasets:
1) IP Trace Dataset: The IP Trace Dataset is streams of

anonymized IP packets collected from high-speed monitors by
CAIDA in 2018 [51]. We use the trace with a monitoring interval
of 60 s. Each item consists of a 5-tuple (13 bytes). There are
around 27 M items and 1.3 M distinct items in this dataset.

2) MAWI Dataset: The MAWI Dataset is a set of anonymized
traffic traces collected from trans-Pacific backbone link by
MAWI Working Group [52]. Each item consists of a source IP
(4 bytes) and a destination IP (4 bytes). There are around 17 M
items and 4.6 M distinct items in this dataset.

3) Network Dataset: This dataset contains users’ posting
history on the stack exchange website [53]. Each item (4 bytes)
represents the ID of each user. There are around 10 M items and
0.7 M distinct items in this dataset.

4) Web Page Dataset: The Web page Dataset is built from a
collection of web HTML documents [54]. Each item (8 bytes)
represents the number of distinct terms in a web page. There are
around 32 M items and 0.9 M distinct items in this dataset.

Metrics:
1) Average Absolute Error: AAE = 1

|Ψ|
∑

ei∈Ψ |fi − f̂i|,
where fi is the real frequency of item ei, f̂i is its estimated
frequency, and Ψ is the total number of distinct items.

2) Average Relative Error:ARE = 1
|Ψ|

∑
ei∈Ψ

|fi−f̂i|
fi

, where

fi is the real frequency of item ei, f̂i is its estimated frequency,
and Ψ is the total number of distinct items.

3) F1 Score: 2∗RR∗PR
RR+PR , where Precision Rate (PR) refers to

the ratio of true positive instances to all reported instances, and
Recall Rate (RR) refers to the ratio of true positive instances to
all actual instances.

4) Throughput: Million of operations (insertions) per second
(Mops). We use throughput to measure the speed.

B. Experiments on Parameter Settings

In this section, we measure the effects of the key parameters of
OneSketch based on the IP Trace Dataset, namely, the number
of cells d per bucket in the Heavy Part, and the ratio r of the
memory size of the Heavy Part to the memory size of the whole

OneSketch. We use F1 Score (only for top-k items2), AAE, ARE,
and Throughput to evaluate the effects.

1) Frequency Estimation for Top-K Items. Effect of d
(Fig. 2(a)–(d)): We find that the optimal value for d is 8. In
this experiment, we fix the ratio r to 0.8, and vary d from 8
to 64. The results show that, especially when the memory size
is relatively small, the F1 Score and throughput decrease as d
increases, while AAE and ARE increase as d increases. Thus,
we set d = 8.

Effect of the ratio r (Fig. 3(a)–(d)): We find that the optimal
value for r is from 0.8 to 0.9. In this experiment, we fix d to 8,
and vary r from 0.5 to 0.9. The results show that the F1 Score
and throughput increase as the ratio r increases, while AAE and
ARE decrease as the ratio r increases. Therefore, the optimal
value of the ratio r is from 0.8 to 0.9, and we set r = 0.8.

2) Frequency Estimation for Per-Item. Effect of d (Fig. 4(a)–
(c)): We find that the optimal value for d is 8. In this experiment,
we fix the ratio r to 0.2, and vary d from 8 to 64. The results
show that the throughput decrease as d increases, while AAE
and ARE do not change as d increases. For simplicity, we set
d = 8.

Effect of the ratio r (Fig. 5(a)–(c)). We find that the optimal
value for r is 0.2. In this experiment, we fix d to 8, and vary r
from 0.1 to 0.5. The results show that the ARE and throughput
increase as the ratio r increases, and AAE does not change with
increasing ratio r except when AAE is maximum at r = 0.1.
To trade off ARE and throughput, we set r = 0.2. Since infre-
quent items in data streams predominate, the optimal value of
the ratio r is different for top-k items and per-item frequency
estimation.

C. Experiments on Five Measurement Tasks

In this section, we compare OneSketch with 12 SOTA
schemes on five important measurement tasks: frequency es-
timation for top-k items (we default k = 2000) (Section V-C1),
frequency estimation for per-item (Section V-C2), heavy hit-
ters (Section V-C3), heavy changes in the time dimension
(Section V-C4), heavy changes in the spatial dimension (Sec-
tion V-C5), and throughput (Section V-C6). In summary, the
results presented in Sections V-C1, V-C2, V-C3, V-C4, and V-C5
are measured in terms of accuracy, while those in Section V-C6
are measured in terms of processing speed.

1) Frequency Estimation for Top-K Items. F1 Score
(Fig. 6(a)–(d)): We find that, on the four datasets, the F1 Score
of OneSketch is 12.5%, 73.0%, 59.2%, 61.6%, 74.3%, 66.7%,
38.2%, 32.4%, 38.6%, 13.8%, 83.8%, and 92.0% higher than
that of S1 to S12 on average under 200 KB of memory, respec-
tively.

AAE (Fig. 7(a)–(d)): We find that, on the four datasets, the
AAE of OneSketch is 13.1, 19.3, 1946.7, 2047.7, 2304.5, 28.3,
247.9, 353.4, 103.0, 16.8, 2210.5, and 14997.2 times lower than
that of S1 to S12 on average, respectively.

ARE (Fig. 8(a)–(d)): We find that, on the four datasets, the
ARE of OneSketch is 10.9, 14.4, 1463.6, 1546.0, 769.3, 20.5,

2For the frequency estimation for per-item, it is equivalent to taking the k of
the output top-k items as all items, so the F1 Score is all 1.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12895

Fig. 2. Effects of the parameter d on frequency estimation for top-k frequent items, where k = 2000.

Fig. 3. Effects of the parameter r on frequency estimation for top-k frequent items, where k = 2000.

Fig. 4. Effects of the parameter d on frequency estimation for per-item.

Fig. 5. Effects of the parameter r on frequency estimation for per-item.

131.5, 193.0, 56.0, 14.4, 632.5, and 5637.1 times lower than that
of S1 to S12 on average, respectively.

2) Frequency Estimation for Per-Item. AAE (Fig. 9(a)–(d)):
We find that, on the four datasets, the AAE of OneSketch is
2.9, 78.9, 338.9, 336.0, 18.7, 11.5, 16.3, 28.1, 10.0, 3.4, 12.4,
and 1061.1 times lower than that of S1 to S12 on average,
respectively.

ARE (Fig. 10(a)–(d)): we find that, on the four datasets, the
ARE of OneSketch is 5.3, 142.8, 101.5, 116.0, 33.2, 21.3, 33.3,

49.7, 17.4, 6.6, 24.8, and 1883.3 times lower than that of S1 to
S12 on average, respectively.

3) Heavy Hitters: We set the threshold to be 2× 10−5 the
total size of traffic. As shown in Figs. 11, 12, and 13, we find
that the F1 Score, AAE, and ARE of OneSketch are always better
than those of the 12 SOTA schemes.

F1 Score (Fig. 11(a)–(d)): We find that, on the four datasets,
the F1 Score of OneSketch is 36.0%, 90.2%, 65.4%, 67.2%,
75.0%, 71.8%, 86.1%, 88.4%, 82.3%, 28.4%, 79.6%, and 84.1%

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

12896 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 6. F1 Score of frequency estimation for top-k frequent items.

Fig. 7. AAE of frequency estimation for top-k frequent items.

Fig. 8. ARE of frequency estimation for top-k frequent items.

higher than that of S1 to S12 on average under 200 KB of
memory, respectively.

AAE (Fig. 12(a)–(d)): We find that, on the four datasets, the
AAE of OneSketch is 13.8, 114.8, 1194.0, 1202.2, 769.5, 86.6,
79.0, 116.5, 31.5, 16.7, 676.3, and 3024.3 times lower than that
of S1 to S12 on average, respectively.

ARE (Fig. 13(a)–(d)): We find that, on the four datasets, the
ARE of OneSketch is 9.7, 144.2, 908.6, 863.3, 427.6, 89.1, 70.2,
103.6, 24.9, 11.6, 360.2, and 1386.2 times lower than that of S1
to S12 on average, respectively.

4) Heavy Changes in the Time Dimension: We set the thresh-
old to be 1× 10−4 of the total size of traffic. The experimental
results in Fig. 14 show that OneSketch always achieves a better
F1 Score than the 12 SOTA schemes.

F1 Score (Fig. 14(a)–(d)): We find that, on the four datasets,
the F1 Score of OneSketch is 48.3%, 82.6%, 61.1%, 63.3%,
69.9%, 66.6%, 81.5%, 82.3%, 72.4%, 25.2%, 72.3%, and 76.0%
higher than that of S1 to S12 on average under 200 KB of
memory, respectively.

5) Heavy Changes in the Spatial Dimension: In this sec-
tion, we conduct experiments for the case where the frequency
decreases sharply between two adjacent physical nodes as an
example. The typical application is packet loss detection in
networks. For the first node, we set each of our four datasets
as the data streams which flow through it. For the second
node, we reconstruct our datasets in the following steps: (1)
We set the threshold to be 1× 10−5 of the total size of traffic
and pick up frequent items from the original dataset. (2) For

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12897

Fig. 9. AAE of frequency estimation for per-item.

Fig. 10. ARE of frequency estimation for per-item.

Fig. 11. F1 Score of heavy hitters.

Fig. 12. AAE of heavy hitters.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

12898 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

Fig. 13. ARE of heavy hitters.

Fig. 14. F1 Score of heavy changes in the time dimension.

Fig. 15. F1 Score of heavy changes in the spatial dimension.

any item in the original frequent items, we drop it with 70%
probability. Eventually, we set the threshold to be 1× 10−4 of
the total size of traffic to detect heavy changes in adjacent two
nodes. The experimental results in Fig. 15 show that OneS-
ketch always achieves a better F1 Score than the 12 SOTA
schemes.

F1 Score (Fig. 15(a)–(d)): We find that, on the four datasets,
the F1 Score of OneSketch is 38.4%, 77.1%, 57.0%, 60.5%,
65.4%, 63.9%, 66.7%, 70.2%, 67.9%, 28.7%, 68.6%, and 73.0%
higher than that of S1 to S12 on average under 200 KB of
memory, respectively.

6) Throughput: In this section, we show the throughput of
13 schemes involving frequent-item frequency estimation tasks
(Sections V-C1, and V-C3, V-C4, and V-C5) and per-item

frequency estimation tasks (Section V-C2). Because some of
the schemes have two versions for these two types of tasks (see
Algorithm Configuration in Section V-A for details), while other
schemes have no distinction. The above results are shown as
the average throughput of 13 schemes in memory 200 KB to
1000 KB stepping 200 KB.

Throughput Comparison of Frequent-Item Versions
(Fig. 16(a)–(d), Orange Part): We find that, on the four
datasets, the throughput of OneSketch is 0.80, 1.6, 5.5, 1.6,
2.9, 3.6, 2.0, 1.3, 2.4, 0.79, 2.9, and 4.2 times higher than
that of S1 to S12 on average, respectively. We can see that the
throughput of OneSketch is less than ES because Frequency
Read/Write Control technique will add extra operations when
item replacement occurs and the insert operation of the tailored

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12899

Fig. 16. Throughput of tasks involving frequent-item and per-item frequency
estimation for 13 schemes.

Tower_CU is much more complex than the light part of ES.
What’s more, for CM/CU/C, they use minheap to maintain
top-k items so that their throughput decreases and is less than
that of OneSketch.

Throughput Comparison of Per-Item Versions (Fig. 16(a)–(d),
Green Part): We find that, on the four datasets, the throughput
of OneSketch is 0.61, 1.2, 4.2, 1.2, 0.72, 1.3, 1.6, 1.01, 1.9,
0.60, 0.69, and 3.2 times higher than that of S1 to S12 on
average, respectively. For OneSketch, due to adding Replace-
ment Control technique, the throughput decreases sightly. For
CM/CU/C, compared with the top-k version, they implement
without minheap so that throughput increases and may larger
than OneSketch.

VI. CONCLUSION

In this paper, we propose the OneSketch, which is generic for
five important tasks and more accurate than SOTA solutions. One

of the measurement tasks considered for OneSketch has hardly
been studied despite having interesting applications. We call it
heavy changes in the spatial dimension. The key design phi-
losophy of OneSketch is overestimation control, around which
we propose four techniques that embrace hash collisions and
minimise overestimation errors in terms of extremely recurrent
item replacements. Experimental results show that OneSketch
performs better in five measurement tasks than ElasticSketch
and the other 11 schemes.

ACKNOWLEDGMENT

The authors would like to thank their editor(s), and the anony-
mous reviewers for their thoughtful feedback. The authors would
also like to thank Xi Peng and Xin Xie from Theory Lab, Central
Research Institute, 2012 Labs, Huawei Technologies Co. Ltd.,
Hong Kong SAR, China, for useful discussions.

REFERENCES

[1] A. Das, J. Gehrke, and M. Riedewald, “Approximate join processing over
data streams,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2003,
pp. 40–51.

[2] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivas-
tava, “On multi-column foreign key discovery,” Proc. VLDB Endowment,
vol. 3, no. 1/2, pp. 805–814, 2010.

[3] Y. Tong, L. Chen, Y. Cheng, and P. S. Yu, “Mining frequent item-
sets over uncertain databases,” Proc. VLDB Endowment, vol. 5, no. 11,
pp. 1650–1661, 2012.

[4] Q. Huang and P. P. Lee, “Toward high-performance distributed stream
processing via approximate fault tolerance,” Proc. VLDB Endowment,
vol. 10, no. 3, pp. 73–84, 2016.

[5] M. Garofalakis, J. Gehrke, and R. Rastogi, “Querying and mining data
streams: You only get one look a tutorial,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2002, pp. 635–635.

[6] C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin, “Sliding-window top-k queries
on uncertain streams,” Proc. VLDB Endowment, vol. 1, no. 1, pp. 301–312,
2008.

[7] Z. Fan et al., “PeriodicSketch: Finding periodic items in data streams,” in
Proc. IEEE Int. Conf. Data Eng., 2022, pp. 96–109.

[8] W. Wang, H. Yin, Z. Huang, Q. Wang, X. Du, and Q. V. H. Nguyen,
“Streaming ranking based recommender systems,” in Proc. 41st Int. ACM
SIGIR Conf. Res. Develop. Inf. Retrieval, 2018, pp. 525–534.

[9] Y. Li, X. Wu, Y. Jin, J. Li, and G. Li, “Efficient algorithms for crowd-aided
categorization,” Proc. VLDB Endowment, vol. 13, no. 8, pp. 1221–1233,
2020.

[10] T. Jin, K. Huang, J. Tang, and X. Xiao, “Optimal streaming algo-
rithms for multi-armed bandits,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 5045–5054.

[11] Y. Wang, Y. Tong, D. Shi, and K. Xu, “An efficient approach for cross-silo
federated learning to rank,” in Proc. IEEE Int. Conf. Data Eng., 2021,
pp. 1128–1139.

[12] Q. Huang et al., “SketchVisor: Robust network measurement for software
packet processing,” in Proc. Conf. ACM Special Int. Group Data Commun.,
2017, pp. 113–126.

[13] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the power of flexible packet processing for
network resource allocation,” in Proc. 14th USENIX Conf. Netw. Syst.
Des. Implementation, 2017, pp. 67–82.

[14] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide measure-
ments,” in Proc. Conf. ACM Special Int. Group Data Commun., 2018,
pp. 561–575.

[15] R. Ramaswamy, L. Kencl, and G. Iannaccone, “Approximate fingerprint-
ing to accelerate pattern matching,” in Proc. 6th ACM SIGCOMM Conf.
Internet Meas., 2006, pp. 301–306.

[16] R. Schweller et al., “Reversible sketches: Enabling monitoring and analysis
over high-speed data streams,” IEEE/ACM Trans. Netw., vol. 15, no. 5,
pp. 1059–1072, Oct. 2007.

[17] N. H. Park, S. H. Oh, and W. S. Lee, “Anomaly intrusion detection
by clustering transactional audit streams in a host computer,” Inf. Sci.,
vol. 180, no. 12, pp. 2375–2389, 2010.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

12900 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 12, DECEMBER 2023

[18] Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang, “Space-efficient relative
error order sketch over data streams,” in Proc. IEEE Int. Conf. Data Eng.,
2006, pp. 51–51.

[19] A. Gkoulalas-Divanis, D. Vatsalan, D. Karapiperis, and M. Kantar-
cioglu, “Modern privacy-preserving record linkage techniques: An
overview,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4966–4987,
Sep. 2021.

[20] R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik, “SALSA:
Self-adjusting lean streaming analytics,” in Proc. IEEE Int. Conf. Data
Eng., 2021, pp. 864–875.

[21] B. Shi, Z. Zhao, Y. Peng, F. Li, and J. M. Phillips, “At-the-time and
back-in-time persistent sketches,” in Proc. Int. Conf. Manage. Data, 2021,
pp. 1623–1636.

[22] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM Conf. Special Int. Group Data Commun., 2013, pp. 435–446.

[23] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,” in
Proc. ACM Conf. Special Int. Group Data Commun., 2015, pp. 479–491.

[24] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S.
Shenker, “Deconstructing datacenter packet transport,” in Proc. 11th ACM
Workshop Hot Top. Netw., 2012, pp. 133–138.

[25] T. Yang et al., “Adaptive measurements using one elastic sketch,”
IEEE/ACM Trans. Netw., vol. 27, no. 6, pp. 2236–2251, Dec. 2019.

[26] L. Tang, Q. Huang, and P. P. C. Lee, “MV-Sketch: A fast and compact
invertible sketch for heavy flow detection in network data streams,” in
Proc. IEEE Conf. Comput. Commun., 2019, pp. 2026–2034.

[27] Y. Zhou et al., “Cold filter: A meta-framework for faster and more accurate
stream processing,” in Proc. Int. Conf. Manage. Data, 2018, pp. 741–756.

[28] P. Jia, P. Wang, J. Zhao, Y. Yuan, J. Tao, and X. Guan, “Loglog filter:
Filtering cold items within a large range over high speed data streams,” in
Proc. IEEE Int. Conf. Data Eng., 2021, pp. 804–815.

[29] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[30] K. Yang et al., “SketchINT: Empowering INT with TowerSketch for per-
flow per-switch measurement,” in Proc. IEEE 29th Int. Conf. Netw. Protoc.,
2021, pp. 1–12.

[31] The source codes related to OneSketch, 2022. [Online]. Available: https:
//github.com/pkufzc/OneSketch

[32] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[33] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in
data streams,” Theor. Comput. Sci., vol. 312, no. 1, pp. 3–15, 2002.

[34] T. Li, S. Chen, and Y. Ling, “Per-flow traffic measurement through
randomized counter sharing,” IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1622–1634, Oct. 2012.

[35] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “FCM-Sketch:
Generic network measurements with data plane support,” in Proc. 16th
Int. Conf. Emerg. Netw. Experiments Technol., 2020, pp. 78–92.

[36] J. Misra and D. Gries, “Finding repeated elements,” Sci. Comput.
Program., vol. 2, no. 2, pp. 143–152, 1982.

[37] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. Int. Conf. Database
Theory, 2005, pp. 398–412.

[38] D. Ting, “Data sketches for disaggregated subset sum and frequent item
estimation,” in Proc. Int. Conf. Manage. Data, 2018, pp. 1129–1140.

[39] P. Roy, A. Khan, and G. Alonso, “Augmented sketch: Faster and more
accurate stream processing,” in Proc. Int. Conf. Manage. Data, 2016,
pp. 1449–1463.

[40] A. Desai, M. Ghashami, and J. M. Phillips, “Improved practical matrix
sketching with guarantees,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 7,
pp. 1678–1690, Jul. 2016.

[41] D. Thomas, R. Bordawekar, C. C. Aggarwal, and P. S. Yu, “On efficient
query processing of stream counts on the cell processor,” in Proc. IEEE
Int. Conf. Data Eng., 2009, pp. 748–759.

[42] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with Univ-
Mon,” in Proc. ACM SIGCOMM Conf., 2016, pp. 101–114.

[43] L. Tang, Q. Huang, and P. P. C. Lee, “A fast and compact invertible sketch
for network-wide heavy flow detection,” IEEE/ACM Trans. Netw., vol. 28,
no. 5, pp. 2350–2363, Oct. 2020.

[44] V. Braverman and R. Ostrovsky, “Generalizing the layering method of
indyk and woodruff: Recursive sketches for frequency-based vectors on
streams,” in Proc. Int. Workshop Approximation Algorithms Combina-
torial Optim. Randomization Approximation Techn. Comput. Sci., 2013,
pp. 58–70.

[45] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
Proc. Eur. Symp. Algorithms, 2003, pp. 605–617.

[46] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm,” in Proc. Conf.
Anal. Algorithms, 2007, pp. 137–156.

[47] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in practice: Algo-
rithmic engineering of a state of the art cardinality estimation algorithm,”
in Proc. 16th Int. Conf. Extending Database Technol., 2013, pp. 683–692.

[48] R. S. Boyer and J. S. Moore, “MJRTY–A fast majority vote algorithm,” in
Automated Reasoning: Essays in Honor of Woody Bledsoe. Norwell, MA,
USA: Kluwer, 1991, pp. 105–117.

[49] R. Ben Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner,
“Randomized admission policy for efficient top-k, frequency, and volume
estimation,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1432–1445,
Aug. 2019.

[50] The source code of Bob Hash, 1997. [Online]. Available: http://
burtleburtle.net/bob/hash/evahash.html

[51] The CAIDA Anonymized Internet Traces, 2018. [Online]. Available: http:
//www.caida.org/data/overview/

[52] MAWI Working Group Traffic Archive, 2010. [Online]. Available: http:
//mawi.wide.ad.jp/mawi/

[53] The Network dataset Internet Traces, 2014. [Online]. Available: http://
snap.stanford.edu/data/

[54] Real-life Transactional Dataset, 2004. [Online]. Available: http://fimi.
uantwerpen.be/data/

Zhuochen Fan received the PhD degree in com-
puter science from Peking University, in 2023, ad-
vised by Prof. Tong Yang. He is currently working
as a Boya post-doctoral fellow with the School of
Computer Science, Peking University. His research
interests include sketches, network measurements,
databases, and machine learning. He published papers
in the IEEE/ACM Transactions on Networking, IEEE
Transactions on Knowledge and Data Engineering,
ICDE, RTSS, ICPP, ICNP, etc.

Ruixin Wang is currently working toward the ME de-
gree in software engineering with Peking University.
His research interests include network measurements,
sketches, and machine learning.

Yalun Cai is currently working toward the under-
graduate degree with Peking University majoring in
computer science. His research interests include net-
work measurements and sketches.

Ruwen Zhang received the BS degree in mathemat-
ics from Peking University, in 2021. He is currently
working toward the master’s degree with Peking Uni-
versity, advised by Tong Yang. He has participated
several articles in network area. He is interested in
network and data stream processing.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

https://github.com/pkufzc/OneSketch
https://github.com/pkufzc/OneSketch
http://burtleburtle.net/bob/hash/evahash.html
http://burtleburtle.net/bob/hash/evahash.html
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/
http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/

FAN et al.: ONESKETCH: A GENERIC AND ACCURATE SKETCH FOR DATA STREAMS 12901

Tong Yang (Member, IEEE) received the PhD degree
in computer science from Tsinghua University, in
2013. He visited the Institute of Computing Technol-
ogy, Chinese Academy of Sciences (CAS). Now, he is
an Associate Professor with the School of Computer
Science, Peking University. His research interests
include network measurements, sketches, IP lookups,
Bloom filters, and KV stores. He has served as a
TPC member for several premier conferences such
as INFOCOM and ICNP. He is currently an associate
editor of the Knowledge and Information Systems. He

published dozens of papers in the IEEE/ACM Transactions on Networking, IEEE
Journal on Selected Areas in Communications, IEEE Transactions on Parallel
and Distributed Systems, IEEE Transactions on Computers, IEEE Transactions
on Knowledge and Data Engineering, VLDB Journal, SIGCOMM, SIGKDD,
SIGMOD, NSDI, USENIX ATC, ICDE, VLDB, INFOCOM, etc.

Yuhan Wu received the bachelor’s degree from the
Department of Electrical Engineering and Computer
Science, Peking University, in 2021. He is currently
working toward the PhD degree in computer science
with the School of Computer Science, Peking Uni-
versity, advised by Tong Yang. His research interests
lie in the fields of computer network and database,
including key-value stores, network measurement,
and sketches.

Bin Cui (Senior Member, IEEE) received the PhD
degree from the National University of Singapore,
in 2004. He is a professor and vice dean with the
School of Computer Science, Peking University. His
research interests include database system architec-
tures, query and index techniques, Big Data man-
agement and mining. He is serving as vice chair of
Technical Committee on Database China Computer
Federation (CCF) and Trustee Board member of the
VLDB Endowment. He was awarded Microsoft Young
Professorship award (MSRA 2008), CCF Young Sci-

entist award (2009), and Second Prize of Natural Science Award of MOE China
(2014), etc.

Steve Uhlig received the PhD degree in applied sci-
ences from the University of Louvain, Belgium, in
2004. He is currently the head with the School of Elec-
tronic Engineering and Computer Science, QMUL.
From 2004 to 2006, he was a post-doctoral fellow
of the Belgian National Fund for Scientific Research
(F.N.R.S.). From 2004 to 2006, he was a visiting
scientist with Intel Research Cambridge, U.K., and
with the Applied Mathematics Department, Univer-
sity of Adelaide, Australia. From 2006 to 2008, he was
with Delft University of Technology, the Netherlands.

Prior to joining Queen Mary, he was a senior research scientist with Technische
Universität Berlin/Deutsche Telekom Laboratories, Berlin, Germany. Since
January 2012, he was the professor of networks and head of the Networks
Research Group, Queen Mary University of London. From 2012 to 2016, he
was a guest professor with the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China.

Authorized licensed use limited to: Peking University. Downloaded on April 02,2024 at 03:05:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

