
RatioSketch: Towards More Accurate Frequency Estimation in Data Streams via
a Lightweight Neural Network

Mengbo Wang1, 2, Zhuochen Fan2 B* , Dayu Wang3, Guorui Xie2, Qing Li2 B, Zeyu Luan2, Yong
Jiang1, 2, Tong Yang3, Mingwei Xu4

1Tsinghua Shenzhen International Graduate School, Tsinghua University, China
2Department of Strategic and Advanced Interdisciplinary Research, Pengcheng Laboratory, China

3State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University, China
4Institute for Network Sciences and Cyberspace, Tsinghua University, China

wmb25@mails.tsinghua.edu.cn, {fanzhch, xiegr, liq, luanzy}@pcl.ac.cn, victorwang030401@stu.pku.edu.cn,
jiangy@sz.tsinghua.edu.cn, yangtong@pku.edu.cn, xumw@tsinghua.edu.cn

Abstract

Sketch-based solutions are widely used to estimate item fre-
quencies in infinite data streams. Traditional hand-crafted
sketches face the bottleneck of further eliminating errors be-
cause they cannot fully utilize the data stream distribution.
Although recent neural sketches represented by MetaSketch
and LegoSketch have improved generalization capabilities,
they face bottlenecks such as high computational overhead
and parameter sensitivity. Meanwhile, they ignore load in-
formation, fail to fully utilize the local information in hand-
crafted sketches, and do not focus on the frequent items
that are usually more important in data streams. In this pa-
per, we propose RatioSketch, a novel lightweight neural net-
work correction framework that synergizes the advantages
of hand-crafted sketches and neural sketches in a “micro-
correction” paradigm. The key idea is to retain the effi-
cient underlying data structure of the hand-crafted sketch
and to build a neural correction layer in its output space.
We select multiple representative hand-crafted sketches as
use cases to study the correction performance of RatioS-
ketch on them. Extensive experimental evaluations on several
real-world datasets show that RatioSketch-corrected sketches
achieve consistently higher estimation accuracy than their un-
corrected counterparts, as well as outperforming neural base-
lines such as MetaSketch and LegoSketch under identical
memory budgets.

Code — https://github.com/pkufzc/RatioSketch

Introduction
As a basic task in data stream processing, frequency esti-
mation aims to estimate the number of occurrences of indi-
vidual items in infinite data streams and has been widely
used in fields such as network measurement (Yang et al.
2018; Tang, Huang, and Lee 2019; Ding et al. 2023) and
machine learning (Bifet et al. 2011; Tai et al. 2018; Zhang
et al. 2024). Traditional hand-crafted sketch algorithms have
been widely studied and recognized both in academia and
industry due to their O(1) time complexity, sublinear space

*B Corresponding authors.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complexity, and small estimation error. Although recent re-
search trend of hand-crafted sketches is to reduce the er-
ror, their static architecture does not allow them to adapt to
diverse data stream distributions, nor can they directly uti-
lize the overall distributional patterns or temporal dynamics
of data streams to further reduce errors. Once they need to
be deployed in different data stream scenarios, their errors
are likely to rise significantly, otherwise they must undergo
complex and time-consuming tuning first, which limits their
adaptability in real-world heterogeneous workloads.

Recent neural sketches attempt to address these limi-
tations via learnable structures (Rae, Bartunov, and Lilli-
crap 2019), with the state-of-the-art (SOTA) solutions being
MetaSketch (Cao, Feng, and Xie 2023; Cao et al. 2024) and
LegoSketch (Feng et al. 2025). MetaSketch uses memory-
augmented neural networks (MANNs) for frequency estima-
tion. Specifically, it formulates sketch operations such as in-
sert and query as differentiable memory accesses, and trains
general models on synthetic distributions through meta-
learning (Santoro et al. 2016) to achieve cross-distribution
adaptation.

The key idea is to abstract item storage as neural write op-
erations, allowing the network to implicitly learn collision-
resolution behavior and thereby reduce errors under con-
strained memory. However, it faces critical limitations: 1)
High training cost. Its cross-domain generalization relies on
a large number of meta-task pre-training; 2) Poor scalabil-
ity. Its fixed-size memory blocks hinder dynamic space bud-
get adaptation. 3) High latency. Its inference requires full
MANN forwarding.

To enhance the performance of MetaSketch, the recent
LegoSketch introduces a modular architecture with compos-
able memory blocks for elastic scaling, enabling flexible
reconstruction of memory organization according to avail-
able space. It first improves scalability through normalized
multi-hashing for zero-shot cross-domain transfer. Then, it
improves accuracy by optimizing high space budget scenar-
ios with self-guided loss and reconstructing global stream
features with Deepsets-based (Zaheer et al. 2017) memory
scanning.

However, its block-based architecture introduces high in-
ference costs and performs poorly on highly skewed data

streams.Its design does not consider the frequent items that
are actually more important, nor does it make full use of lo-
cal information, and its hard threshold is not flexible enough.

Furthermore, a core issue with leading solutions such as
MetaSketch and LegoSketch lies in their inability to bal-
ance the tension between neural network expressiveness
and stream processing efficiency.They clearly prioritize the
former, focusing on representational power and flexibility,
and as a result, their real-world performance in high-speed
stream environments remains suboptimal, often incurring
significant computation and latency costs.

In this paper, we propose RatioSketch, a novel lightweight
neural network-based sketch correction framework that
aims to significantly improve the frequency estimation per-
formance of both traditional hand-crafted sketches and
emerging neural sketches, without altering their under-
lying data structures or compromising update efficiency
greatly. RatioSketch synergizes the advantages of hand-
crafted sketches and neural sketches through a “micro-
correction” paradigm, in which the neural component op-
erates only in the output space of the base hand-crafted
sketch to refine its estimates with minimal overhead. In other
words, it retains the efficient underlying data structure of
the base hand-crafted sketches and builds a neural correc-
tion layer in their output space. Compared with reconstruct-
ing the entire storage process (such as MANN-based solu-
tions mentioned above), RatioSketch focuses on mining the
multi-source information inside hand-crafted sketches, with
the key techniques including:

• Multi-Source Feature Fusion. It integrates a Global
Encoder capturing sketch matrix states, a local ana-
lyzer extracting proportional errors from hash collisions,
and a structural adapter modeling item-slot relationships,
forming a triple feature enhancement mechanism;

• Ratio-Based Modeling. It decouples estimation into the
output of hand-crafted sketches and neural scaling coef-
ficients via frequency-space transformation;

• Differentiated Loss Weighting. It imposes a log-
frequency weighted penalty on each item, thereby em-
phasizing the correction of frequent items.

Contributions. 1) We propose RatioSketch, a novel
lightweight neural network-based sketch framework appli-
cable to diverse hand-crafted sketches, consistently correct-
ing their frequency estimation accuracy for both all items
and frequent items in arbitrary data streams. 2) RatioSketch
addresses a series of problems such as high training over-
head, weak scalability, weak generalization, and lack of sup-
port for frequent items, which were not addressed by previ-
ous neural sketches, through key technical innovations, and
can achieve absolute accuracy advantage with only a small
memory budget. 3) We also provide a rigorous theoretical
analysis for the estimation error of RatioSketch. 4) Exten-
sive experiments on six real-world datasets demonstrate that
RatioSketch significantly outperforms SOTA methods with
minimal training overhead. The source codes of RatioSketch
are available at GitHub.

Related Work
Hand-Crafted Sketches
As a kind of probabilistic data structure, sketches are among
the most appropriate and widely adopted solutions for data
stream processing tasks such as frequency estimation for all
items and frequent items. For per-item frequency estima-
tion, the most classic sketch is the Count-Min Sketch (CMS)
(Cormode and Muthukrishnan 2005a), which consists of d
arrays Ai(1 ≤ i ≤ d), each with a hash function hi(.) and
w counters. When inserting an item e, CMS increments the
d hashed counter Ai[hi(e)] by 1. When querying the (es-
timated) frequency of e, CMS reports the smallest value
among the d hashed counters Ai[hi(e)]. Similarly, the ba-
sic structure of the classic CUS (Estan and Varghese 2003)
and CS (Charikar, Chen, and Farach-Colton 2002) is also
d ·w counters, but the item operations are different. Their er-
rors are caused by hash collisions, where different items are
hashed to the same counter, which is particularly severe with
small memory budgets. In addition, the skewed distribution
of data streams (Cormode and Muthukrishnan 2005b) causes
most counters to record counts far less than their capacity.
To avoid wasting space, the SOTA TowerSketch (Yang et al.
2023) allocates the same memory for each array but uses
progressively smaller counters from higher to lower levels.
This hierarchical design ensures that frequent items overflow
into larger, high-precision counters at upper levels, while in-
frequent items remain tracked in smaller, low-cost counters
at lower levels, achieving a better balance between accuracy
and memory utilization. In addition, there are many SOTA
sketches designed specifically for frequent-item frequency
estimation1 (Roy, Khan, and Alonso 2016; Yang et al. 2018;
Li et al. 2020; Zhang et al. 2021). CMS, CUS, and CS can
also be equipped with a small heap to accomplish this goal,
allowing dynamic maintenance of the current top-k items in
the stream.

Neural Sketches
Recent advances integrate neural networks with sketches
to improve adaptability. One of the SOTA, MetaSketch
(Cao, Feng, and Xie 2023; Cao et al. 2024), reformulates
stream processing as neural memory operations and imple-
ments a memory-augmented neural network (MANN) (We-
ston, Chopra, and Bordes 2014; Graves, Wayne, and Dani-
helka 2014; Graves et al. 2016) with four learnable mod-
ules: embedding, addressing, memory, and decoding. It em-
ploys meta-training on synthetic Zipf (Powers 1998) streams
for distributional robustness. However, its fixed-size mem-
ory matrix impedes dynamic budget scaling, making it dif-
ficult to adapt efficiently when the available memory or
stream density changes over time. Another SOTA LegoS-
ketch (Feng et al. 2025) introduces composable memory
blocks for elastic scaling, enabling zero-shot domain trans-
fer via normalized multi-hash embeddings. While signifi-

1This task is also known as finding top-k items and heavy-
hitters, which aims to report the items with the k largest frequencies
and the items with frequencies exceeding a given threshold, respec-
tively, and they are often considered the same research problem.

cantly improving accuracy and scalability, it still incurs a
large computational cost.

Methodology
Preliminaries
First, we outline the item frequency estimation problem
in a standard data stream model. Consider a data stream
S = (e1, . . . , eN) consisting of a total of N items with
n distinct items. Each item ei ∈ S , comes from the item
domain set E = {E1, . . . , En}, where the items in E are
unique. The frequency fi of the item Ei represents its num-
ber of occurrences in S. Hence, the total frequencies, i.e.,
the sum of all fi, are exactly the length N of S.

The design goal of RatioSketch is to make it theoreti-
cally possible to correct the frequency estimation results for
any base hand-crafted sketch (whether it is the typical CMS
or the SOTA TowerSketch). For illustration, we adopt the
Count-Min Sketch (CMS) as the default base hand-crafted
sketch (denoted BaseSketch) for correction, since it repre-
sents the most fundamental and widely studied sketch ar-
chitecture. For Ei, when using BaseSketch to query its fre-
quency, there are usually multiple estimated values to choose
from. We use v = [v1, . . . , vd] to denote the estimated fre-
quency for the d hashed positions (i.e., d optional values)
when querying Ei, and v0 to denote the estimated value fi-
nally provided by BaseSketch.

RatioSketch Framework: Frequency Correction
Network Based on Multi-Feature Fusion
Overview RatioSketch consists mainly of two parts: the
underlying BaseSketch that performs standard counting op-
erations, and a lightweight Correction Module that refines
its output estimates through neural inference. The item in-
sertion and storage operations (Figure 1 Actions) depend on
BaseSketch itself. When querying the final estimated fre-
quency, we invoke the Correction Module to make fine-
grained corrections based on the intermediate values pro-
vided by BaseSketch, effectively performing a post-hoc neu-
ral calibration. Correction Module consists mainly of four
parts: Global Information Module (Figure 1 Global En-
coder), Local Information Module (Figure 1 Local Encoder),
Load Information Module (Figure 1 Load Decoder) and Ra-
tio Decoding Module (Figure 1 Ratio Decoder). Each en-
coder or decoder consists solely of several layers of fully
connected neural networks with ReLU activation functions.
An overview of the inputs and outputs of the corresponding
encoder or decoder is provided in Equations 2-7. It is worth
noting that the Global Information Module and the Load In-
formation Module only need to be run once during the final
batch query f̂i and are independent of N , thus achieving
high efficiency.

Global Information Module The Global Information
Module extracts structural characteristics from the Storage
Matrix (size d · w) illustrated in Figure 1 to provide auxil-
iary information for frequency correction. To balance com-
putational efficiency with comprehensive feature extraction,
we select the first 64 counters from each row for processing.

Our experimental results show that 64 counters offer a stable
trade-off: fewer counters fail to capture sufficient global load
patterns, while more counters introduce additional overhead
without bringing measurable accuracy gains.

The selected counter values are normalized as
valuenorm = value·α

N (where α is an amplification fac-
tor) to ensure effective neural network processing. These
normalized values are processed through the Global
Encoder to derive hidden info, which are subsequently
processed to extract the final global info.

The resulting global information encapsulates critical data
stream characteristics, including distribution patterns, load
ratios, thereby providing essential information for the Ratio
Decoder.

Local Information Module This module focuses on the
local values v = [v1, . . . , vd] at the d hashed positions cor-
responding to a single item, capturing the fine-grained local
variations caused by hash collisions and counter saturation.
We aim for this module to explore whether the current item
is frequent or infrequent, as manifested by the differences
among the vj values, which implicitly denote the degree of
interference from other items. Theoretically, the v0 of fre-
quent items is less affected by other items, leading to smaller
fluctuations in rj (to be defined below). In contrast, the v0
of infrequent items is more significantly influenced by other
items, resulting in larger fluctuations in rj . We expect the
Local Encoder to utilize this information to assist the opera-
tion of the Ratio Decoder.

For the data processing DP(.), we first sort v from small
to large to get v1 ≤ v2 ≤ · · · ≤ vd. Then, the ratio feature rj
is calculated for each position, with the denominator being
the final estimated frequency v0 of BaseSketch:

rj =
vj − v0

v0
, j = 1, 2, . . . , d (1)

We further extract statistics such as the mean (µr), vari-
ance (σ2

r), and median (mr) of rj . Meanwhile, the frequency
weight fw = w·v0

N and other possible features are concate-
nated into [r1, r2, . . . , rd, µr, σ

2
r ,mr, fw] as the input of Lo-

cal Encoder. After these features are encoded, they are con-
verted into local feature vectors and input into the Ratio De-
coder.

Sorting helps the network learn from inputs of different
magnitudes, automatically assigning appropriate weights to
positions like maximum/minimum values. Statistical com-
pression through mean, variance, and median helps capture
local distribution patterns, ultimately providing fine-grained
local information for BaseSketch correction.

Load Information Module In supervised learning, the
learning goal of this module is n

w , which is called loadr (Fig-
ure 1 Load Info) to represent the severity of counter slot con-
flicts. To achieve this goal, the Load Decoder senses the hid-
den features output by the Global Encoder (Figure 1 Hidden
Info) and outputs loadr. Since w of BaseSketch is known, n
can be predicted by calculating loadr ·w. Meanwhile, since
we predict a ratio n

w instead of a specific n, we can make pre-
dictions on BaseSketch with any different memory size. n

w

Figure 1: The Framework of RatioSketch.

has a small variation range and is less affected by the range
of neural network parameters.

Even if w varies from hundreds of thousands to millions,
it still performs well. This is impossible for those solutions
(such as LegoSketch) that directly use neural networks to
predict n.

Feature Fusion and Ratio Decoding Module Ultimately,
the model splices global information, local sorting enhance-
ment features, and structural parameters through the Ratio
Decoder, which outputs the ratio correction coefficient C
with a decoding frequency of:

f̂ = C · v0 (2)

Where C = RatioDec(·) is output by the above feature fu-
sion network. The whole process is shown in Fig. 1:

G,Ghidden = GlobalEnc (Norm (memory)) (3)

L = LocalEnc (DP (v, v0)) (4)
loadr = LoadDec (Ghidden) (5)

S =

(
loadr
d

,
d · w
N

,
loadr · w

N

)
(6)

C = RatioDec (L⊙G,S) (7)
Where: G and Ghidden are global and hidden feature in-
formation, respectively, which are extracted by Global En-
coder GlobalEnc after being scaled by Storage Matrix; DP
represents the corresponding operation described in the Lo-
cal Information Module on v, and finally obtains the vec-
tor [r1, r2, . . . , rd, µr, σ

2
r ,mr, fw]; L is local information,

which is extracted by the Local Encoder LocalEnc from
the vector provided by the DP operation; S is structural in-
formation (Figure 1 Struct Info), which is maped (Figure 1

MAP) from loadr and BaseSketch size information; and ⊙
represents item-by-item multiplication (fusion of global and
local information).

Summary of Theoretical Advantages Our RatioSketch
greatly improves the generalization, structural adaptability
and robustness of the model through global and local infor-
mation fusion, proportionality and load perception mecha-
nisms, and can achieve high-accuracy frequency correction
under any BaseSketch structure and data stream distribution.

Loss Function Design
The loss function of RatioSketch uses a weighted loss based
on ratio error2, as follows: For all items, a logarithmic
weighted ratio error is used:

RatioLoss =
1

n

n∑
i=1

log2(fi + 1) ·

∣∣∣∣∣ f̂ivi0 − fi
vi0

∣∣∣∣∣ (8)

The logarithmic weight log2(fi+1) makes frequent items
account for a larger proportion of the loss, improving the
accuracy of their correction.

In addition, in order to ensure the rationality of structural
parameter estimation and further improve generalization, the
item size structural constraint is introduced:

LoadLoss =

∣∣∣∣w · loadr
n

− 1

∣∣∣∣ (9)

In addition, we use a self-adjusting weight assignment func-
tion LW (Kendall, Gal, and Cipolla 2018) to balance the

2Our ratio loss (instead of the ARE/AAE combined adaptive
weighting used by SOTA) is verified to be more stable and effec-
tive, with faster training convergence.

relationship between RatioLoss and LoadLoss, which is ex-
pressed as follows:

LW =

N∑
i=1

(
1

2s2i
Li + log(1 + s2i)

)
(10)

where N is the number of loss items, Li is the original loss
of the i-th item, si is the learnable weight parameter of the
i-th item and can be automatically learned through back-
propagation. Hence, the final total loss is:

L = LW(RatioLoss,LoadLoss) (11)

Adaptation to different BaseSketch Firstly, RatioSketch
can further optimize its correction for frequent items esti-
mated by CMS with heap. Specifically, we use heapflag to
mark whether an item is in the heap: if it is, the item is at
the head of the data stream; otherwise, it is at the tail. In
feature processing, we concatenate heapflag with features
such as DP(v, v0) and input them into the Local Encoder
together. In the loss function, we also set different loss func-
tions: for those in the head, the loss function is not changed,
and log2(fi + 1) is still used to emphasize frequent items;
for those in the tail, log2(fi+1) is replaced by 1, so that the
final loss function becomes:

L = LW(RatioLossh,RatioLosst,LoadLoss) (12)

Secondly, each of the d hash functions of TowerSketch
corresponds to multiple counters of different sizes. We select
some counters from small to large and splice them together
in a specified order for better input into the Global Encoder.

Thirdly, RatioSketch allows manual control of ratio
ranges as needed. This configurable range lets practitioners
set appropriate bounds for different BaseSketch structures
and scenarios.

Training and Inference
The training and inference procedures for RatioSketch are
described in Algorithm 1. During the training phase, Ra-
tioSketch is trained on synthetic datasets and fine-tuned us-
ing real-world datasets or past samples from historical data
streams. During the inference phase, we only need to extract
features from the underlying BaseSketch and input them into
the correction model to obtain a more accurate frequency es-
timation.

Mathematical Analysis
Problem Setup
We consider the Count-Min Sketch (CMS) framework as our
foundational sketch structure. We assume CMS employs d
independent hash functions and a d · w counter matrix.

Under this setup, each sketch value can be modeled as:

vj = f +Xj

where f is the true frequency of the item and Xj represents
the hash collision error at position j. The collision errors
{Xj}dj=1 are typically non-negative due to the additive na-
ture of hash collisions in CMS.

Algorithm 1: RatioSketch training and reasoning procedures

Require: multiple arbitrary data streams S = {(Ei, fi)},
BaseSketch M, RatioSketch R

1: initialize M
2: for each S do
3: Insert S data into M, obtain multiple estimates vij

and final estimates vi0 for each item Ei;
4: Extract global information G, local information Li,

structural information S;
5: Calculate input features Fi = [Li ⊙G,S];
6: Calculate correction coefficient Ci = R(Fi);
7: Predict frequency f̂i = Ci · vi0;
8: Calculate loss (f̂i, fi);
9: Back propagate and update model parameters;

10: end for
11: Inference phase: Repeat steps 3-7 for the new data

stream without updating parameters

Analysis of Feature Engineering
The superior performance of RatioSketch stems from its
principled feature engineering design. Our framework is
built upon three key theoretical insights that ensure both ro-
bustness and generalization across diverse data distributions
and sketch configurations.

First, our ratio-based feature design achieves scale invari-
ance, enabling the same model to handle frequencies span-
ning multiple orders of magnitude without retraining. Sec-
ond, the statistical compression of local features provides
distributional stability, ensuring consistent performance re-
gardless of the underlying data characteristics. Third, our
load-aware mechanism guarantees structural adaptability, al-
lowing seamless deployment across different sketch sizes
and memory constraints.

Theorem 1. (Scale Invariance of Ratio Features) Under
the Count-Min Sketch framework, the ratio features ri =
vi−v0
v0

exhibit exact scale invariance with respect to the true
frequency f .

Proof. In the CMS framework, each counter value is vi =
f+Xi, where Xi =

∑
k:hi(k)=hi(item) fk represents the col-

lision error from other items hashing to the same position.
The CMS estimate is v0 = minj vj = f + X(1) where
X(1) = minj Xj .

The ratio feature becomes:

ri =
vi − v0

v0
=

(f +Xi)− (f +X(1))

f +X(1)
=

Xi −X(1)

f +X(1)

For any scaling f → αf , the collision errors scale pro-
portionally: Xi → αXi (since all frequencies scale). Thus:

r′i =
αXi − αX(1)

αf + αX(1)
=

α(Xi −X(1))

α(f +X(1))
=

Xi −X(1)

f +X(1)
= ri

Therefore, the ratio features exhibit exact scale invariance
under proportional scaling of all frequencies.

Theorem 2. (Stability of Statistical Moments) In the CMS
framework, the statistical moments (µr, σ

2
r ,mr) of ratio fea-

tures {ri} are stable with bounded variance for reasonable
load factors.

Proof. In CMS, due to hash function independence,
E[Xi] = N−f

w where N is the stream size. The mean ra-
tio becomes:

µr =
1

d

d∑
i=1

ri =
X̄ −X(1)

f +X(1)

As d → ∞, by the law of large numbers, X̄ → N−f
w . For

the minimum statistic X(1), it converges to a stable value
dependent on the collision distribution rather than zero.

Therefore:

E[µr] ≈
N−f
w − E[X(1)]

f + E[X(1)]

The variance analysis shows Var(µr) =
O(1

d(f+E[X(1)])2
), which decreases with both d and f ,

ensuring statistical stability. Similar bounds hold for σ2
r and

mr.

Theorem 3. (Load Ratio Consistency) In CMS, the empiri-
cal load ratio ρ̂ = n̂

w converges to the true load ratio ρ = n
w

at rate O(
√
logw/w).

Proof. In CMS, each counter j is non-empty with probabil-
ity p = 1− (1− 1

w)n ≈ 1− e−n/w. The number of distinct
items can be estimated as:

n̂ = −w ln

(
number of empty counters

w

)
Let Z be the number of empty counters. Then Z ∼

Binomial(w, e−n/w). By standard concentration inequali-
ties:

P

(∣∣∣∣Zw − e−n/w

∣∣∣∣ ≥ ϵ

)
≤ 2e−2wϵ2

Applying the delta method to the logarithmic trans-
formation and solving for ϵ yields the convergence rate
O(
√
logw/w) for ρ̂ = n̂

w .

Analysis of the Training Process
Our method provides strong theoretical foundations for
end-to-end learning with neural networks. First, we rig-
orously demonstrate that our transformation preserves
(nearly) all Fisher information, establishing the fundamen-
tal information-theoretic capacity of our approach. Building
upon this, we prove that the training process is well-behaved,
that is, the optimization landscape is smooth and the model
converges efficiently. Furthermore, we show formal general-
ization bounds for the learned models and illustrate their ro-
bustness guarantees under small input perturbations. These
results together provide a comprehensive theoretical under-
standing of why our neural sketch approach is both powerful
and widely applicable.

The analysis of Fisher Information is crucial for estab-
lishing the information-theoretic capacity of our method.
By rigorously demonstrating that our feature transforma-
tion preserves a significant amount of the original Fisher In-
formation, we formally validate that the subsequent neural
network is provided with nearly all the essential informa-
tion required to accurately estimate the true frequency. This
preservation ensures that the learning process is fundamen-
tally well-posed and has the potential to converge to a high-
accuracy solution, confirming that our feature engineering is
not only intuitive but also theoretically sound.
Theorem 4. (Fisher Information Preservation) Under the
CMS framework with reasonable load conditions, sorting
hash values and employing ratio features preserve at least
(1 − O(

√
log d/d)) of the Fisher information for estimat-

ing the true frequency f . Statistical moments (µr, σ
2
r ,mr)

retain essential information with only O(log d/d) loss.

Proof. In CMS, each counter value is vi = f+Xi where Xi

represents collision errors. Under reasonable independence
assumptions for hash functions, the Fisher information for
estimating f from the original counters is approximately:

Iv(f) ≈
d∑

i=1

1

Var(vi)
=

d∑
i=1

1

Var(Xi)

Sorting preserves the total information content but
changes the joint distribution structure. The ratio transfor-
mation ri =

vi−v0
v0

removes the absolute scale dependency
while maintaining relative differences.

By the delta method, the information loss from the ra-
tio transformation is bounded by the inverse of the mini-
mum eigenvalue of the transformation Jacobian. For well-
conditioned cases where v0 is not too small, this loss is
O(

√
log d/d).

The further compression to statistical moments
(µr, σ

2
r ,mr) loses additional information. Under the

assumption that ratios are approximately Gaussian (by
CLT for large d), these three moments capture most
of the distributional information, with loss bounded by
O(log d/d).

Theorem 5. (Training Smoothness and Convergence) Un-
der the weighted ratio loss with logarithmic weighting, the
training process converges with rate dependent on the fre-
quency distribution. For bounded ratio features, stochastic
gradient descent achieves:

E[∥∇L(θt)∥2] ≤ C · ρt

where C and ρ < 1 depend on the weight distribution
{log2(fi + 1)}.

Proof. The weighted ratio loss has gradients:

∇RatioLoss =
1

n

n∑
i=1

log2(fi + 1) · sign

(
f̂i − fi
vi0

)
· ∇f̂i

The logarithmic weights log2(fi + 1) are bounded for
practical frequency ranges, ensuring gradient boundedness.

Figure 2: AAE for All Items on Six Real-World Datasets.

Figure 3: ARE for All Items on Six Real-World Datasets.

The self-adaptive weighting LW automatically balances
the ratio and load losses, providing stable optimization dy-
namics. The combination of bounded features and adaptive
weighting leads to convergence guarantees.

Theorem 6. (Generalization Bound) Under the weighted
loss function, with probability at least 1− δ:

L(ĥ)− L(h∗) ≤ O

(√
H log(dw) + log(1/δ)

m

)

where H = E[log2(y + 1)] captures the frequency distribu-
tion’s complexity.

Proof. The logarithmic weighting creates a non-uniform
sampling effect, where frequent items contribute more to the
loss. This modifies the Rademacher complexity by a factor
related to the weight distribution. The effective sample com-
plexity becomes frequency-dependent, with the bound scal-
ing with H = E[log2(y+1)]. The multi-task nature (ratio +
load losses) adds logarithmic factors to account for the joint
optimization.

Theorem 7. (Robustness Bound) Under the weighted ratio
loss, for inputs S, S′ differing by one item with frequency
∆f :

|f̂(S′)− f̂(S)| ≤ Lnet · log2(∆f + 1) ·O
(
∆f

v0

)
where the logarithmic weight amplifies the sensitivity for
significant frequency changes.

Proof. The change in weighted loss due to inserting one
item with frequency ∆f is:

∆L = log2(∆f + 1) ·

∣∣∣∣∣∆f̂

v0

∣∣∣∣∣
For frequent items, log2(∆f + 1) can be large, amplify-

ing the impact on the loss and consequently on the model’s
output. The final robustness bound includes this logarithmic
amplification factor, showing that the method is more sen-
sitive to changes in frequent items, which aligns with the
design goal of prioritizing accuracy for frequent items.

Experiments
Experimental Setup
Datasets Six real-world datasets are used in the experi-
ment: Webdocs (Lucchese et al. 2004), MAWI (Cho, Mit-
suya, and Kato 2000), DC (Benson, Akella, and Maltz
2010), AOL (Pass, Chowdhury, and Torgeson 2006), Criteo
(Diemert et al. 2017), and CAIDA. The statistical informa-
tion of each dataset is shown in Table 1. Each dataset is
equally divided into a training set and a test set. In the train-
ing phase, the main model is first trained on synthetic Zipf
distribution datasets. The Zipf parameter (skewness) range
of the synthetic data is [0.1, 1.5], and the number of items
ranges from [10,000, 100,000]. The generation method and
parameter distribution of synthetic data are consistent with
real-world data streams to improve the generalization ability
of the model. During the training phase, the model is veri-
fied on real-world datasets, and historical stream data can be
used for fine-tuning to achieve better correction and facili-
tate actual deployment.

Figure 4: AAE for Frequent Items on Six Real-World Datasets.

Figure 5: ARE for Frequent Items on Six Real-World Datasets.

Dataset n N Zipf Skewness

Webdocs 812638 10000000 1.29
MAWI 4185350 23352934 0.80
DC 7907345 19855388 0.67
AOL 1717043 3614506 0.63
Criteo 9023599 16468027 0.56
CAIDA 24701616 33503292 0.21

Table 1: Statistics of real-world datasets

Baselines To comprehensively evaluate the correction ca-
pability and applicability of RatioSketch, we select multi-
ple sketches for comparison. Firstly, we adopt the classic
CMS and the SOTA TowerSketch as the underlying BaseS-
ketch data structures used by RatioSketch, and they are also
used as baselines. In other words, RatioSketch is integrated
into the above-mentioned BaseSketches as an additional cor-
rection module to correct their frequency estimation results.
Secondly, MetaSketch and LegoSketch, as the SOTA neural
sketches, are naturally used as baselines.

Memory Budget During the training phase, in order to
improve the adaptability of the model under different mem-
ory budgets, each round of tasks will dynamically allocate
the memory size for BaseSketch. Specifically, according to
n in the current training batch, a value in the memory range
[n16 , n · 32] is randomly selected as the total memory M

(in KB); Then, w = M ·1024
4·d is set, where d = 3 (divi-

sion by 4 for 32-bit counters). This strategy ensures that
the model workscan work effectively under various mem-
ory constraints. During the evaluation phase, a fixed-size

memory is used for testing. LegoSketch and MetaSketch use
many memory blocks, each of size 100KB, and the block
count is determined by total allocated memory. Each item is
randomly mapped to one block for insertion/query.

Parameters The core architecture details are as follows:
The Global Encoder contains four Linear-ReLU layers (1 →
16 → 16 → 16 → 16). The Load Decoder and Local In-
formation Encoder each include three Linear-ReLU layers,
with dimensions (16 → 16 → 16 → 1) and (8 → 16 →
16 → 16), respectively. The Ratio Decoder has four layers
(19 → 16 → 16 → 16 → 1), where the first three use ReLU
and the final layer uses a Sigmoid activation to produce the
output ratio. As a result of this compact design, RatioSketch
achieves a compact model size of only 11KB, significantly
smaller than LegoSketch (20KB) and much more efficient
than MetaSketch, whose parameter count scales with mem-
ory size and requires approximately 2× memory matrix stor-
age due to its slot-dependent mechanism.

Evaluation Metrics We use the two most common error
metrics, Average Absolute Error (AAE) and Average Rela-
tive Error (ARE), which are defined as follows:

AAE(f̂) =
1

n

n∑
i=1

∣∣∣f̂i − fi

∣∣∣ , ARE(f̂) =
1

n

n∑
i=1

∣∣∣f̂i − fi

∣∣∣
fi

In addition, we calculate AAE/ARE separately for the items
ranked in the top 20% of frequency to evaluate the estima-
tion ability of frequent items, denoted by Top AAE/ARE.
Finally, we evaluate speed using throughput, which is de-
fined as millions of operations per second (Mops).

Accuracy and Speed
AAE/ARE for All Items As shown in Figures 2-
3, the results show that the two corrected schemes
CMS+RatioSketch and TowerSketch+RatioSketch, have the
best AAE/ARE on all datasets, which are significantly bet-
ter than the uncorrected BaseSketches (CMS and TowerS-
ketch), and clearly better than the two SOTA neural sketches
(LegoSketch and MetaSketch). It is worth noting that our
corrected schemes have a more obvious advantage when
the memory budget is small. For example, under the min-
imum memory budget of 5MB of the CAIDA dataset (the
most commonly used dataset for hand-crafted sketches):
the AAE of CMS+RatioSketch (TowerSketch+RatioSketch)
is 148.2× (726.7×), 27.7× (135.9×), 31.0× (152.2×),
and 11.3× (55.6×) lower/better than those of LegoS-
ketch, MetaSketch, CMS, and TowerSketch, respectively;
the ARE of CMS+RatioSketch (TowerSketch+RatioSketch)
is 155.3× (2301.5×), 25.5× (377.3×), 32.2× (477.1×),
and 11.6× (172.4×) lower/better than those of LegoSketch,
MetaSketch, CMS, and TowerSketch, respectively. This is
significant because in actual deployment, memory resources
are often scarce, and memory usage usually needs to be con-
sidered first.

AAE/ARE for Frequent Items As shown in Fig-
ures 4-5, the results show that the corrected schemes
CMS+RatioSketch and TowerSketch+RatioSketch still have
the optimal AAE/ARE among all schemes on all datasets,
verifying that the correction of RatioSketch specifically for
frequent items is effective. Specifically, under the minimum
memory budget of 5MB of the CAIDA dataset: the AAE of
CMS+RatioSketch (TowerSketch+RatioSketch) is 125.3×
(166.6×), 42.8× (56.9×), 28.0× (37.2×), and 10.8×
(14.4×) lower/better than those of LegoSketch, MetaS-
ketch, CMS, and TowerSketch, respectively; the ARE of
CMS+RatioSketch (TowerSketch+RatioSketch) is 158.6×
(934.2×), 36.0× (211.9×), 33.8× (199.0×), and 12.5×
(73.6×) lower/better than those of LegoSketch, MetaSketch,
CMS, and TowerSketch, respectively.

Throughput We evaluate the throughput of all schemes in
terms of store and query operations using the CAIDA dataset
on both CPU and GPU platforms. As shown in Figure 6,
the results show that the store throughput of the corrected
schemes CMS+RatioSketch and TowerSketch+RatioSketch
is comparable to that of the uncorrected schemes CMS and
TowerSketch, and is clearly better than that of LegoSketch
and MetaSketch; While their query throughput is somewhat
reduced due to the additional forward propagation calcula-
tion, it is still acceptable.

Ablation Study
To evaluate the impact of each feature module in RatioS-
ketch, we design ablation experiments: remove the global
information, local information, and structural information
(processed load information) branches, respectively, and
compare them with the complete model. We conduct tests on
three datasets: CAIDA, DC, and Webdocs, with Zipf skew-
nesses of 0.21, 0.67, and 1.29, respectively, to verify the

Figure 6: Throughput Comparison.

effectiveness of each module under different Zipf distribu-
tions. As shown in Figure 7, removing any feature module
leads to performance degradation, confirming that all three
are crucial for enhancing the model’s generalization ability
and correction accuracy.

Figure 7: Ablation Study.

Conclusion
In this paper, we propose a novel lightweight neural
network-based sketch correction framework called RatioS-
ketch, which aims to overcome the challenges of SOTA neu-
ral sketches. RatioSketch establishes itself as a universally
compatible corrector for diverse hand-crafted sketches, in-
trinsically boosting their frequency estimation accuracy. The
advantages of RatioSketch are theoretically proven through
rigorous mathematical analysis. Our extensive experiments
show that RatioSketch-corrected CMS and TowerSketch
have significantly better AAE and ARE than their uncor-
rected versions, as well as better than the SOTA neural
sketches such as MetaSketch and LegoSketch, with minimal
memory overhead.

Acknowledgments
This work is supported by the Basic and Frontier Research
Project of PCL under grant No. 2025QYB004, the Na-
tional Natural Science Foundation of China (NSFC) un-
der grant No. 62402012, the Major Key Project of PCL
under grant No. PCL2025A09, and the Shenzhen Key
Lab of Software Defined Networking under grant No.
ZDSYS2014050917295998.

References
Benson, T.; Akella, A.; and Maltz, D. A. 2010. Network
traffic characteristics of data centers in the wild. In IMC,
267–280.
Bifet, A.; Holmes, G.; Pfahringer, B.; and Gavalda, R. 2011.
Detecting sentiment change in Twitter streaming data. In
WAPA, 5–11.
Cao, Y.; Feng, Y.; Wang, H.; Xie, X.; and Zhou, S. K. 2024.
Learning to sketch: A neural approach to item frequency es-
timation in streaming data. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(11): 7136–7153.
Cao, Y.; Feng, Y.; and Xie, X. 2023. Meta-sketch: A neu-
ral data structure for estimating item frequencies of data
streams. In AAAI, volume 37, 6916–6924.
Charikar, M.; Chen, K.; and Farach-Colton, M. 2002. Find-
ing frequent items in data streams. Theoretical Computer
Science, 312(1): 3–15.
Cho, K.; Mitsuya, K.; and Kato, A. 2000. Traffic data repos-
itory at the WIDE project. In USENIX ATC.
Cormode, G.; and Muthukrishnan, S. 2005a. An improved
data stream summary: the count-min sketch and its applica-
tions. Journal of Algorithms, 55(1): 58–75.
Cormode, G.; and Muthukrishnan, S. 2005b. Summarizing
and mining skewed data streams. In SDM, 44–55.
Diemert, E.; Meynet, J.; Galland, P.; and Lefortier, D. 2017.
Attribution modeling increases efficiency of bidding in dis-
play advertising. In AdKDD, 1–6.
Ding, R.; Yang, S.; Chen, X.; and Huang, Q. 2023. Bitsense:
Universal and nearly zero-error optimization for sketch
counters with compressive sensing. In SIGCOMM, 220–
238.
Estan, C.; and Varghese, G. 2003. New directions in traffic
measurement and accounting: Focusing on the elephants, ig-
noring the mice. ACM Transactions on Computer Systems,
21(3): 270 – 313.
Feng, Y.; Cao, Y.; Wang, H.; Xie, X.; and Zhou, S. K. 2025.
Lego Sketch: A Scalable Memory-augmented Neural Net-
work for Sketching Data Streams. In ICML.
Graves, A.; Wayne, G.; and Danihelka, I. 2014. Neural tur-
ing machines. arXiv preprint arXiv:1410.5401.
Graves, A.; Wayne, G.; Reynolds, M.; Harley, T.; Danihelka,
I.; Grabska-Barwińska, A.; Colmenarejo, S. G.; Grefen-
stette, E.; Ramalho, T.; Agapiou, J.; et al. 2016. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626): 471–476.
Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multi-task learn-
ing using uncertainty to weigh losses for scene geometry and
semantics. In CVPR, 7482–7491.
Li, J.; Li, Z.; Xu, Y.; Jiang, S.; Yang, T.; Cui, B.; Dai, Y.; and
Zhang, G. 2020. Wavingsketch: An unbiased and generic
sketch for finding top-k items in data streams. In SIGKDD,
1574–1584.
Lucchese, C.; Orlando, S.; Perego, R.; and Silvestri, F. 2004.
WebDocs: a real-life huge transactional dataset. In FIMI,
volume 126.

Pass, G.; Chowdhury, A.; and Torgeson, C. 2006. A picture
of search. In InfoScale, 1–es.
Powers, D. M. 1998. Applications and explanations of
Zipf’s law. In CoNLL, 151–160.
Rae, J.; Bartunov, S.; and Lillicrap, T. 2019. Meta-learning
neural bloom filters. In ICML, 5271–5280.
Roy, P.; Khan, A.; and Alonso, G. 2016. Augmented sketch:
Faster and more accurate stream processing. In SIGMOD,
1449–1463.
Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; and
Lillicrap, T. 2016. Meta-learning with memory-augmented
neural networks. In ICML, 1842–1850.
Tai, K. S.; Sharan, V.; Bailis, P.; and Valiant, G. 2018.
Sketching linear classifiers over data streams. In SIGMOD,
757–772.
Tang, L.; Huang, Q.; and Lee, P. P. 2019. Mv-sketch: A fast
and compact invertible sketch for heavy flow detection in
network data streams. In INFOCOM, 2026–2034.
Weston, J.; Chopra, S.; and Bordes, A. 2014. Memory net-
works. arXiv preprint arXiv:1410.3916.
Yang, K.; Long, S.; Shi, Q.; Li, Y.; Liu, Z.; Wu, Y.; Yang,
T.; and Jia, Z. 2023. SketchINT: Empowering INT with
TowerSketch for per-flow per-switch measurement. IEEE
Transactions on Parallel and Distributed Systems, 34(11):
2876–2894.
Yang, T.; Jiang, J.; Liu, P.; Huang, Q.; Gong, J.; Zhou, Y.;
Miao, R.; Li, X.; and Uhlig, S. 2018. Elastic sketch: Adap-
tive and fast network-wide measurements. In SIGCOMM,
561–575.
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R. R.; and Smola, A. J. 2017. Deep sets.
NeurIPS, 30.
Zhang, H.; Liu, Z.; Chen, B.; Zhao, Y.; Zhao, T.; Yang, T.;
and Cui, B. 2024. Cafe: Towards compact, adaptive, and fast
embedding for large-scale recommendation models. SIG-
MOD, 2(1): 1–28.
Zhang, Y.; Liu, Z.; Wang, R.; Yang, T.; Li, J.; Miao, R.;
Liu, P.; Zhang, R.; and Jiang, J. 2021. CocoSketch: High-
performance sketch-based measurement over arbitrary par-
tial key query. In SIGCOMM, 207–222.

