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Abstract
Encrypted traffic analysis techniques extract valuable informa-
tion from encrypted traffic and pose significant threats to user
privacy. However, existing defense mechanisms against traffic
analysis either incur significant bandwidth overhead and lack
scalability, or fail to provide sufficient defense against evolv-
ing attacks. The emerging programmable switches provide
data plane programmability with line rate packet process-
ing to support advanced defense mechanisms. In this work,
we present Minos, a lightweight and scalable programmable
switch-based defense mechanism while providing both iden-
tity anonymity and traffic anonymity. Minos comprises three
key modules: the Proxy Module, the Traffic Morphing Mod-
ule, and the Schedule Module. In the Proxy Module, we de-
sign encryption round compression to take advantage of the
match-action pipeline of programmable switches and realize
line rate packet header encryption. The Schedule Module in-
corporates a lightweight dynamic flow scheduling method
to interleave packets from different flows, so as to simulate
dummy packets without causing bandwidth and delay over-
head on the data plane. The Traffic Morphing Module further
obfuscates the flows by dummy packet insertion and packet
padding. Specifically, we devise a lightweight dummy packet
scheduling method using priority dummy queues, minimizing
bandwidth and delay overhead within the switch pipeline. We
implement our defense on Tofino1 switches and adapt our
method to defend Website Fingerprinting and IoT Fingerprint-
ing. The results show that Minos can reduce the accuracy of
previous attacks to less than 20% with only one-tenth of the
overhead of existing defenses.

1 Introduction

Nowadays, user privacy has become a major concern [54–56],
leading to the development of encryption protocols that se-
cure packet payloads and shield user information. Neverthe-
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less, even with encryption protocols, attackers can still com-
promise user privacy through encrypted traffic analysis tech-
niques [26, 39, 48, 62]. These techniques assume a passive
attacker who eavesdrops traffic from the victim by its 5-tuple
(Source IP, Destination IP, Source port, Destination port, Pro-
tocol) to infer users’ intentions–usually the resources they are
requesting, such as websites or videos. Attackers can clas-
sify encrypted traffic by machine learning classifiers, without
actually knowing packet contents, using features extracted
from just packet sizes, packet directions, and some statistical
features such as the total number of packets and the fraction
of incoming or outgoing packets to the total number of pack-
ets. By leveraging the aforementioned 5-tuple, attackers can
intercept the privacy of specific targets, deducing the content
they access. Traffic analysis methods for different kinds of
applications have been developed, including Website Finger-
printing (WF) [20, 42, 48] and IoT Fingerprinting [26, 46],
posing serious threats to these applications.

The most popular defense methods against traffic analy-
sis are Proxy-based defenses, which obfuscate the 5-tuple
of user flows to hinder attackers from capturing pure traffic
without background noise, thereby reducing the accuracy of
classifiers. For example, IPsec gateways replace the source
IP of each flow with its own public IP to create an end-to-
end encrypted tunnel between two gateways. Multiple flows
from various users are concurrently transmitted through this
encrypted tunnel so that attackers can only capture a blend
of noisy traffic, making categorizing encrypted traffic con-
siderably more challenging [49]. However, they suffer from
several critical weaknesses. First, most IPsec gateways have
limited throughput [35] and cannot process today’s high rate
traffic, i.e., 100Gbps. Furthermore, security gateways, being
specialized hardware with fixed capabilities, are not designed
to incorporate advanced security features. This limitation not
only renders them ineffective against new threats but also
means they do not offer traffic anonymity to protect users’
privacy. For example, the attack proposed in [14] applies
packet labeling to each packet and successfully infers device
types through noisy IoT traffic with per-packet features.
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Table 1: Comparison of the existing solutions.

Scheme Lightweight Scalable Anonymity
Identity Anonymity Traffic Anonymity

Proxy-based Defenses ✓ ✓ ✓ ×
Traffic morphing-based Defenses × × × ✓

Ditto [28] × ✓ × ✓
Minos ✓ ✓ ✓ ✓

Traffic morphing-based defenses [9, 10, 52,58] can effec-
tively impede fingerprinting attacks by morphing character-
istics of the origin traffic flows through padding, splitting,
and inserting packets, reducing the accuracy of WF attacks
to random guess [10]. These defense mechanisms obfuscate
the metadata of user flows, providing traffic anonymity to de-
feat traffic analysis attacks. However, traffic morphing-based
defenses share a common disadvantage: their practical de-
ployment can be challenging due to high bandwidth over-
head. For instance, in Tamaraw [10], the bandwidth overhead
reaches 199%, resulting in a goodput of less than 40%. Be-
sides, traffic morphing-based defenses, targeted at individual
users, lack scalability to perform defenses for multiple users
due to the escalated overhead. Finally, traffic morphing-based
defenses do not offer identity anonymity and require a VPN
to obfuscate the 5-tuple.

Lately, researchers have explored line rate traffic obfus-
cation on programmable switches [28] for traffic morphing-
based defenses. Programmable switches, with their inherent
flexibility, scalability, and customizability, offer line rate pro-
cessing capability of up to 100Gbps and the ability to adapt
to changing network demands. Ditto [28] establishes tunnels
between programmable switches and sends packets with a
static traffic pattern of fixed intervals and fixed size sequences.
Although Ditto has achieved increased throughput compared
to its predecessors, it still introduces significant additional
bandwidth overhead by padding packets to specified sizes,
as well as increased latency due to passing packets through
the switch twice. Besides, Ditto requires the cooperation of
IPsec gateways or MACsec gateways to hide user identity,
thus fails to provide identity anonymity.

In this work, we present Minos, a lightweight and scal-
able programmable switches-based defense mechanism while
providing both identity anonymity and traffic anonymity at
100Gbps line rate. In Minos, we design three modules as de-
fense primitives in the switch hardware: the Proxy Module,
the Schedule Module, and the Traffic Morphing Module. The
Proxy Module performs line rate packet header encryption
and acts as gateway switches of a trusted entity to realize an
end-to-end encrypted tunnel to provide identity anonymity.
The Traffic Morphing Module enhances the defense perfor-
mance of Proxy-based defenses by performing lightweight
dummy packet insertion and packet padding to provide traffic
anonymity. In the Schedule Module, we dynamically sched-
ule multiple flows to accommodate multiple end users.

The design and implementation of Minos on programmable
switches face three challenges: 1) Ensuring line rate en-
cryption with the Proxy Module is challenging since pro-
grammable switches have limited computational resources
and cannot accommodate complex calculations or numer-
ous encryption rounds; 2) Managing a multitude of flows
from various users concurrently with the Schedule Module
is challenging since we need to prevent packet disorder and
minimize the overhead associated with traffic morphing. 3)
Implementing the Traffic Morphing Module requires insert-
ing dummy packets to obscure flows. However, since packets
cannot be directly generated in the data plane and must be
injected in advance by the control plane, inserting dummy
packets into flows in real-time poses a significant challenge.

We address the above key algorithmic and system design
challenges in Minos as follows. To achieve line rate encryp-
tion within constrained computations and resources, we devise
an Encryption Round Compression method to implement the
Proxy Module, which realizes implementation on hardware
programmable switches equipped with match-action tables,
eliminates the necessity for multiple pipeline passes, and en-
sures line rate encryption. To handle concurrent user traffic in
a dynamic and scalable manner, we propose a Dynamic Flow
Scheduling Method in the Schedule Module, which leverages
packets from different flows to act as dummy packets to other
flows. We formulate our flow scheduling algorithm to obfus-
cate flows dynamically according to multiple per-flow states
and enable traffic morphing based on active flow numbers.
With the scheduling algorithm, Minos is able to obfuscate
flows with minimal dummy packets and packet padding. To
realize real-time insertion of dummy packets, we design Pri-
ority Queue based Dummy Packet Scheduling to approximate
real-time dummy packet insertions with little bandwidth over-
head, thereby enabling the implementation of a lightweight
Traffic Morphing Module.

We implement Minos on Tofino1 switches, and the eval-
uation shows that Minos has better throughput performance
than previous defenses. The evaluation results also show that
Minos can reduce the accuracy of Website Fingerprinting
attacks to less than 20% with lower bandwidth and latency
overhead than previous defenses.

The remainder of this paper is organized as follows. We first
discuss the related work in Section 2, and then introduce our
design goals and Minos system overview in Section 3. Then,
we elaborate on the design of the Proxy Module, Schedule
Module, Traffic Morphing Module in Section 4, 5 and 6. We
evaluate the performance of Minos in Section 7, and adapt
Minos to defend against Website Fingerprinting in Section 8.
At last, we conclude our work in Section 9. We further expand
our defense to defeat IoT Fingerprinting in Appendix A.
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2 Background and Motivation

2.1 Encrypted Traffic Analysis

Encrypted traffic analysis is a passive attack in which attackers
collect encrypted traffic flows by 5-tuple (Source IP, Destina-
tion IP, Source port, Destination port, Protocol) and analyze
them through machine learning classifiers to infer whether
victims are visiting some specific resources (e.g. websites and
videos). Figure.1 shows an example of encrypted traffic anal-
ysis attacks, where users use different kinds of applications,
e.g., websites, video streams, and IoT applications, inside
a local network, and send encrypted traffic through a gate-
way. A local attacker may eavesdrop on the gateway, while a
remote attacker eavesdrops on flows from the untrusted net-
work by the 5-tuple of each flow, thereby locating the user and
compromising their privacy. Considering the distinctive char-
acteristics of different target applications, several encrypted
traffic analysis attacks have been designed, e.g., Website Fin-
gerprinting (WF) [20, 42, 48] and IoT Fingerprinting [26, 46].

Website Fingerprinting. Website Fingerprinting attacks
target victims who use proxies and encrypted protocols to
hide their identities and packet contents when browsing. Early
works like [16, 48] focus on HTTPS traffic, where attackers
are able to utilize the sizes, directions, and intervals of packets.
Wang et al. [48] design an attack that utilizes the k-Nearest
Neighbour classifier on a feature set including unique packet
lengths, bursts, etc., and achieve an accuracy of 0.85 on early
defenses like [25,52]. Recent WF attacks aim at Tor [13], one
of the most frequently used anonymous communications tools.
Tor conceals clients’ packet size by sending packets in fixed
size (512-byte) Tor cells, rendering attacks more challenging
because Tor traffic only discloses packet directions. Hayes et
al. [20] develop a k-fingerprints attack with random forests to
extract and represent fingerprints of different traffic traces and
achieve 88% TPR in an open-world setting. Recent attacks [6,
37, 42] exploit deep learning against WF defenses, achieving
accuracy over 95%.

IoT Fingerprinting. IoT Fingerprinting poses a signifi-
cant threat to the rapidly growing IoT user base. IoT Finger-
printing attacks have seen success in decrypting IoT device
types [30, 43, 44]. For example, [30] identifies device types
with over 95% accuracy by passively observing network traf-
fic using a two-fold classification system. Beyond device fin-
gerprinting, [26, 45, 46] even manage to infer user activities
from IoT traffic, further exacerbating user privacy concerns.
[26] generates sequence profiles from packet sequences and
matches them to collected traffic traces to estimate device
types and user interactions. [45] develops two polynomial
time algorithms to capture IoT devices’ activity signatures
and full activity sequences.

Local Network

Untrusted Network

Website

Video stream

IoT device

DNS query

Encrypted Traffic
Gateway

Remote AttackerLocal Attacker

Figure 1: An example of encrypted traffic analysis.
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10.10.10.1
Trusted Entity

Network
20.20.20.0/24

Gateway

20.20.20.1

Public IP:
80.0.0.1

Figure 2: An example of IPsec gateway.

2.2 Defenses against Encrypted Traffic Analy-
sis

Proxy-based defenses. Proxy-based defenses obfuscate the
5-tuple of user flows, preventing passive observers from ob-
taining clear traffic traces without noise. Popular Socks-based
proxies like Shadowsocks [3] and V2Ray [2] break one ac-
cess to a website into several flows by randomly generating
new ports to request different resources in a website. Hence,
the attackers can only capture partial access to the website
through various 5-tuples. IPsec gateways, commonly used
as LAN gateways, establish a secure and encrypted tunnel
with aggregated flows by replacing the original IP headers
with new IP headers with the same public IP, as illustrated in
Figure. 2. In this way, attackers can only capture a noisy flow
where multiple flows are actually transmitting, rather than
pinpointing any individual user because they cannot capture
the user’s original IP address.

Proxies are widely deployed because they are lightweight,
bringing little bandwidth or latency overhead, and can han-
dle multiple end users. However, these proxies fail to de-
fend against new encrypted traffic analysis. [27] succeeds
in recognizing websites through per-flow traffic analysis and
breaches socks-based proxies. [14] identifies device types
by a LSTM model with per-packet labels, threatening IoT
users even with the protection of IPsec gateways. Although
proxies provide identity anonymity, emerging studies indicate
that traditional Proxy-based defenses are no longer safe, thus
traffic morphing-based defenses are necessary.

Traffic morphing-based defenses. Traffic morphing-
based defenses obfuscate traffic traces to resist traffic analysis
attacks by inserting, delaying, combining, or splitting pack-
ets. BuFLO [16] removes all side-channel information by
sending fixed-length packets at a fixed interval for at least a
fixed amount of time. [21] proposes WTF-PAD, an adaptive
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padding method on top of Tor, which utilizes a finite state ma-
chine along with histograms. WTF-PAD is effective against
conventional attacks, with half the bandwidth overhead of Bu-
FLO, but fails to resist the more advanced deep learning-based
attacks [42]. To defeat deep learning classifiers, researchers
have applied adversarial perturbations [32] and patches [23].
[18] designs a lightweight defense that dedicates most of its
bandwidth budget to obfuscate the trace front. In IoT Finger-
printing, Alshehri et al. [5] attack tunneled IoT traffic based
on packet-size sequences and propose an algorithm to pad
packets with uniform random noise to defend against it. Ac-
cording to [5] and [44], it is necessary to hide packet lengths
to defend against IoT Fingerprinting.

In summary, traffic morphing-based defenses, despite their
effectiveness, face three main challenges. First, their high
bandwidth and latency overhead hinder real-world deploy-
ment, especially for handling multiple users within a trusted
entity. Second, deploying multiple targeted defenses simulta-
neously is infeasible and laborious due to excessive bandwidth
demands. Third, traffic morphing-based defenses can not hide
user identity and require the cooperation of proxies. Although
recent studies [17] have increased the packet processing speed
of end hosts, it is impractical to equip every user with a dedi-
cated network interface card. Moreover, configuring defenses
for each user would bring escalated overhead and place a
greater burden on the network.

2.3 Traffic Analysis Defense on Programmable
Switches

Traditional switches have fixed default functions. Thus net-
work operators have to apply specific middleboxes or upload
packets to servers [29] to support customized functions, which
bring extra costs with limited throughput [57]. The emerging
programmable switches provide data plane programmability
with line rate packet processing capability to support cus-
tomized functions [53, 59, 63]. This advancement presents
a valuable opportunity to enhance the throughput of traffic
morphing-based defense mechanisms by integrating traffic
morphing directly into the programmable pipeline [28]. Our
work focuses on PISA (Protocol Independent Switch Archi-
tecture) processors, which allow packet processing at line rate
(100 Gbps) with flexible modification of packet headers by

P4 [8]. A typical Tofino architecture is shown in Figure. 3.
Packets sent to the data plane pass through two pro-

grammable pipelines and a Traffic Manager (TM). In the
ingress pipeline, packets are first parsed by the ingress parser
and mapped into the Packet Header Vector (PHV). After leav-
ing the parser, PHVs are sent into the match-action pipeline
where network admins can design their own packet process
logic by configuring match-action tables. Packets are then as-
sembled by the deparser and passed to the TM, where packets
are replicated, recirculated, or buffered in the Traffic Man-
ager’s round-robin queues and then passed forward to the
egress pipeline which is identical to the ingress pipeline.

With the help of the programmable pipeline and multi-
functional Traffic Manager, programmable switches can po-
tentially deploy proxy-based defense and traffic morphing-
based defense at the same time, providing both identity
anonymity and traffic anonymity. Several studies have
attempted implementing encryption algorithms on pro-
grammable switches. [11] and [60] implement standard en-
cryption algorithms, e.g., AES, on programmable switches.
However, they must send packets through the pipeline multi-
ple times and thus cannot reach line rate. [12, 19, 33] either
lack hardware implementation or require extensive communi-
cation with the control plane. [47] implements the two-round
Even-Mansour scheme on hardware programmable switches,
at the cost of excessive computing resource consumption.

A recent work, Ditto [28], establishes tunnels between
programmable switches and obfuscates traffic with packet
padding and dummy packets. However, Ditto exhibits a few
limitations. First, Ditto relies on IPsec and MACsec gate-
ways for encryption, which will bring additional deployment
difficulties and costs. Besides, IPsec gateways have limited
throughput compared to programmable switches and may
become the bottleneck of the whole system. In Minos, we
provide traffic obfuscating primitives along with encryption
primitives and no extra devices are required. Second, Ditto re-
alizes complete traffic anonymity by sending packets through
a static traffic pattern with fixed intervals and fixed size se-
quences. Consequently, each packet must be padded to a pre-
determined size and sent through the pipeline twice for packet
scheduling, resulting in significant latency and bandwidth
overhead. Third, Ditto cannot adapt to dynamic network envi-
ronments due to its reliance on a static traffic pattern.

3 Minos Overview

3.1 Design Goals
In this work, we propose Minos, a line rate traffic analysis
defense scheme based on programmable switches. Based on
the shortcomings of proxy-based and traffic morphing-based
defenses, we propose the following design goals.

Lightweight. Minos is lightweight and easy to deploy in
the real world. We design each Minos module with minimal
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Figure 4: System overview of Minos.

bandwidth overhead and hardware resources.
Scalable. Minos is able to dynamically adjust its defense

strategy to accommodate different circumstances and handle
concurrent flows from multiple users.

Anonymity. Minos provides both identity anonymity and
traffic anonymity. Minos not only hides user identities through
encryption but also performs traffic obfuscation, concealing
metadata within the traffic.

Like IPsec, Minos establishes an end-to-end tunnel between
an obfuscating gateway (e.g., an organization’s gateway) and
a corresponding de-obfuscating gateway (e.g., ISPs that offer
enhanced privacy or IoT operators that secure user data) for
traffic obfuscation. We assume a passive attacker [20,48] who
collects traffic from any point between Minos gateways and
classifies them from their 5-tuples but cannot modify or insert
packets.

Unlike Tor, the goal of Minos is not to hide the identities of
the endpoints involved, but to establish an encrypted channel
between the sender and the receiver and to conceal the meta-
data and the user identities. This objective is similar to the
setup in Ditto. In real-world deployment, for instance, when
deploying Minos to defend against IoT Fingerprinting attacks,
it is necessary for IoT devices to transmit essential informa-
tion to the IoT service provider. The objective of Minos is
not to conceal the identity of the IoT service provider, but
rather to ensure that attackers are unable to infer users’ IoT
activity from the communication between the IoT device and
the service provider. This principle remains consistent when
deploying Minos to mitigate other types of attacks.

3.2 System Overview
The main process of Minos runs on the programmable data
plane and communicates with the control plane to configure
Traffic Manager settings. Packets entering the Minos switch

will pass three modules before exit: the Proxy Module, the
Schedule Module, and the Traffic Morphing Module.

The Proxy Module acts as a gateway switch that replaces
the source IP of each packet with the gateway IP and sends
packets at line rate. The original source IP and other fields
will be encrypted and placed in a new header. Particularly,
we design Encryption Round Compression exploiting match-
action tables to achieve line rate implementation of packet
header encryption on programmable switches.

The Schedule Module aggregates different flows to the
same destination to obfuscate the original traffic with minimal
dummy packets. Packets entering Minos switches will be
inserted into specific queues and interleaved by the switch’s
Traffic Manager. Specifically, we propose a dynamic schedule
algorithm to perform flow interleaving and decide whether to
enable the Traffic Morphing Module. With the co-action of
the Proxy Module and Schedule Module, Minos aggregates
each incoming flow with limited overhead.

The Traffic Morphing Module provides primitives to im-
plement traffic morphing-based defenses, consisting of the
Dummy Module and the Padding Module. The former mod-
ule manages dummy packets and the latter module pads and
assembles packet headers. We design priority queue-based
dummy packet scheduling to realize real-time dummy packet
insertion.

Figure. 4 shows the workflow of Minos. When a flow enters
a Minos switch, its source IP will be replaced and encrypted
by the Proxy Module in the ingress pipeline, and scheduled
into the Traffic Manager by the Schedule Module. Mean-
while, the Schedule Module examines the flow state and
decides whether the Traffic Morphing Module should be
applied. When few flows are active, simply interleaving flows
is not sufficient to defeat advanced attacks. Thus, the Traffic
Morphing Module will be activated, and its Dummy module
and Padding module will perform dummy packet insertion
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and packet padding, respectively. When there is a substantial
number of active flows, the Traffic Morphing Module is not
needed. The control plane periodically adjusts queue configu-
rations and changes the port max rate limitation to perform
strict priority round-robin scheduling in the Schedule Module.

4 Proxy Module

The Proxy Module acts as a secure gateway switch and per-
forms line rate packet header encryption. In this section, we
introduce how we design and implement the Proxy Module
to reach line rate.

4.1 Choose of cipher
Similar to IPsec gateways, Minos Proxy Module replaces
the original source IP of each flow with the public IP of the
gateway. Related information (e.g., the original IP header)
is encrypted and placed in a new header. Minos is typically
used for Website Fingerprinting, IoT Fingerprinting, etc., and
the receiver end is often a large service provider. Since these
providers commonly deploy technologies such as anycast and
CDN with publicly accessible IP addresses, encrypting the
destination IP is not necessary. Therefore, Minos encrypts
the source IP address and source port to provide identity
anonymity.

However, achieving line rate implementation of an encryp-
tion algorithm in programmable switches is a challenging
task, due to the limited resources and computations of the pro-
grammable switches. The selection of cipher should take into
account the following aspects. First, the encryption algorithm
should exclusively employ computational operations com-
patible with P4 switches. Asymmetric encryption algorithms
that require prime-based computations [22, 38] and resource-
intensive symmetric encryption algorithms like IDEA [1]
are impractical choices. Second, as Tofino1 programmable
switches consist of 12 stages per pipeline and 24 stages in
total, the chosen encryption algorithm should be completed
within 24 rounds. For instance, implementing a 64-round
lightweight cipher TEA [51] on a programmable switch would
necessitate multiple pipeline passes, resulting in increased la-
tency overhead. Third, the cipher should utilize as few match
action tables as possible to avoid resource contention with
other programs.

In Minos, we choose PRINCE [7], a low-latency,
lightweight SPN-based block cipher as our encryption al-
gorithm on the programmable switch. Figure. 5 shows the
basic core encryption process of PRINCE, with one encryp-
tion round on each side. PRINCE takes a 64-bit string as
input and cuts it into sixteen 4-bit strings. In each encryp-
tion round, a 4-bit Sbox maps a 4-bit input to a 4-bit output,
which is multiplied with a matrix M and then XORed with
a 64-bit RC as well as the key k1. String-to-string mapping
can be easily realized by match-action tables, making Sbox-
and-permutation-based ciphers well-suited for programmable
switches. Also, PRINCE, with its maximum of 10 encryption
rounds (6 or 8 rounds also viable), aligns with typical 12-
stage pipelines. Additionally, PRINCE features a α-reflection
property, enabling encryption and decryption with the same
set of match-action tables.

4.2 Encryption round compression
Although the PRINCE algorithm is well-suited for pro-
grammable switches, it cannot be directly implemented on
programmable switches due to the limitation of stages. Each
encryption round involves a sequence of non-parallelizable
operations. Allocating each step of an encryption round to a
separate stage would necessitate four stages per round and
a total of at least forty stages, exceeding the capacity of a
single 12-stage pipeline. To address this limitation, we add k1
and RCi together and pre-add the k1-RCi to each Sbox in each
round to combine the Sbox together with XOR. It’s hard to
implement the matrix multiplication in the data plane because
this computation is not supported in programmable switches.
However, we observe that the actual input and output of each
4*4 matrix are four 4-bit strings thus we can combine the
matrix multiplication step with the Sbox-xor table by imple-
menting a 4-bit to 4-bit mapping table for each of the 16 4-bit
strings.

4.3 Memory Consumption Reduction
The α-reflection feature of PRINCE cipher allows easier
implementation on programmable switches. With a 128-bit
key k, PRINCE divides it into two 64-bit halves k0 and k1,
and employs these halves to generate a third 64-bit chunk
k′0 = (k0 ≫ 1)⊕ (k0 ≫ 63). PRINCE encrypts a packet on
the sender switch with k0,k′0,k1 the receiver switch decrypts
the packet by encrypting the packet again with k′0,k0,k1 ⊕α:

D(k0||k′0||k1)(message) = E(k′0||k0||k1 ⊕α)(message), (1)

where α is a constant derived from the fraction part of π.
Taking advantage of this feature, when implementing Minos
on a P4 switch, we employ a single set of keys and match-
action tables for both encryption and decryption, effectively
reducing the SRAM consumption by half. The match-action
tables are determined by key k1, and the Minos sender switch
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Figure 6: A comparison of IPsec gateway and Minos.

can hold multiple sets of keys to establish encrypted tunnels
with different receiver switches by altering k0, without the
need to modify match-action tables. As both ends of the tunnel
are trusted, keys can be exchanged and updated by operators
through the control plane.

5 Schedule Module

In Minos, the Schedule Module mixes multiple flows by per-
forming dynamic flow scheduling. Figure. 6a illustrates how
an IPsec gateway mixes flows. An IPsec gateway mixes pack-
ets from multiple flows and sends them out in a first-in-first-
out manner, which unavoidably includes consecutive packets
from the same flows. Traffic analysis attackers can potentially
exploit traffic windows comprising consecutive packets to de-
duce privacy-related information, such as device types [14,41].
Prior traffic morphing-based defense schemes [9, 10] insert
dummy packets between original packets to address this flaw,
but at the expense of increased bandwidth and latency over-
head.

In Minos, the Schedule Module addresses this with greater
efficiency by cleverly exploiting multiple flows, using packets
from different flows as dummy packets for one another. As
illustrated in Figure 6b, the Schedule Module interleaves pack-
ets from flow A and flow B, enabling packets from one flow to
act as dummy packets for the other. This innovative schedul-
ing strategy disrupts the attacker’s model, significantly reduc-
ing its accuracy while providing an effective and lightweight
defense mechanism.

The detailed scheduling process of Minos on the data plane
is illustrated in Figure. 7. In Minos, our aim is to achieve
per-flow scheduling, but the match-action pipeline in a pro-
grammable switch typically handles flows on a per-packet
basis, lacking consideration for flow states. To enable flow
interleaving, maintaining per-flow states becomes essential.
In Minos, we address this challenge by utilizing registers
within the programmable data plane to store the following
flow states:

Hit
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Figure 7: Schedule algorithm of Minos.

Flow A to 10.0.0.1

10.0.0.1

Flow B to 10.0.0.1

Flow C to 20.0.0.1

Minos

20.0.0.1

Encrypted tunnel to 10.0.0.1

Encrypted tunnel to 20.0.0.1

Figure 8: Example of multiple encrypted tunnels.

• Timestamp. The timestamp for a flow identified by
the 5-tuple is stored in the corresponding entry. Upon
packet ingress, Minos records the entry timestamp, sig-
nifying when the last packet from this flow entered the
pipeline. Inactive flow entries are subject to expiration
and removal from the register through the recirculation
of dummy packets.

• Queue ID. The queue ID to which the flow is sent.

• Flow count. A Minos sender switch maintains multiple
encrypted tunnels with multiple destination IPs, each
representing a Minos receiver switch that performs de-
cryption and de-obfuscation. We monitor the number
of flows currently transmitting to each destination IP.
Figure. 8 shows the scheduling of three flows. Flow A
and B are sending to 10.0.0.1, so they will be mixed into
an encrypted tunnel to 10.0.0.1. Flow C is sending to
20.0.0.1, so it will be sent into another encrypted tun-
nel. We assume that passive attackers will eavesdrop
on each encrypted tunnel based on sender and receiver
Minos switches’ IP addresses. Recording flow numbers
in each encrypted tunnel helps Minos decide whether
traffic morphing is needed.

• The last assignment of the queue ID of each destination
IP.

For each packet entering the pipeline, Minos first maps its
5-tuple into the timestamp register and performs a lookup in
the queue ID register. If an entry exists, it means that previous
packets of this flow have been sent into a specific queue so
that the following packets should be sent through the same
queue to avoid packet reordering. If no entry is found, it means
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the packet is initializing a new flow. Then, the 5-tuple will
be matched in the destination IP register. If an entry is found
in the destination IP register, the flow will be assigned to the
next queue based on the recorded queue ID. This new flow’s
queue ID will be the origin queue ID plus one. In this way,
flows in the same encrypted tunnel will be evenly spread into
different queues and scheduled in a round-robin manner, just
like Flow A and B in Figure. 8. If the destination IP is not
found, it means that we are building a new encrypted tunnel
and no restrictions are applied to this flow. In this case, the
flow will be sent into the shortest queue to balance queue
length.

The flow count table keeps track of the number of flows
sent to each destination to decide whether the Traffic Morph-
ing Module should be activated. When the number of flows
in an encrypted tunnel is very small, a mixture of these flows
is insufficient to conceal their information effectively. More-
over, when only a few flows are active, the Schedule Module
may encounter the problem of asymmetric flow interleaving,
where one flow sends significantly more packets than others,
resulting in consecutive packets from the same flow. This
could potentially expose features from the aggregated flow to
traffic analysis attackers. In such cases, the Traffic Morphing
Module will perform dummy packet insertion to supplement
packets for flow mixing. Besides, it will also conduct packet
padding to further obfuscate flows. The flow count table is
regularly checked to decide whether to invoke the Traffic Mor-
phing Module to make sure sufficient protection is always in
place. In the Schedule Module, we only track the target flows
that require defenses, rather than recording every incoming
flow. For detailed implementation, please refer to Section 7.1.

6 Traffic Morphing Module

The Traffic Morphing Module performs dummy packet inser-
tion and packet padding to implement traffic morphing. In
this section, we introduce how we implement the Dummy
Module and the Padding Module in a lightweight manner.

6.1 Dummy Module
Although programmable switches cannot generate packets
directly from the data plane, programmers can incorporate
template packets into the pipeline. A typical workflow of
this process is as follows. First, packet templates are sent
by the switch CPU or through specific ports, marking every
subsequent packet from that port as a dummy packet. Second,
dummy packets are passed through the pipeline and essential
functions are executed, e.g. updating registers. Third, after go-
ing through the ingress pipeline, dummy packets can either be
sent into the egress pipeline or inserted into the recirculation
port for another pass through the pipeline.

However, sending dummy packets in a pipeline is challeng-
ing, as they must be generated in advance and can not be sent

queue
selection

500

1000

1500

1500

priority queue pairs

500

1000

1500

1500

round robin queues

loopback
first round

second round

real traffic

dummy traffic

(a) Ditto Traffic Manager

Traffic manager
dummy queue

Traffic manager

Low priority 
normal queues

High priority
dummy queue

(b) Minos Traffic Manager

Figure 9: Different dummy packet scheduling methods.

on demand. In Minos, for instance, obfuscating a single flow
within a tunnel requires the use of dummy packets. However,
the inability to generate these packets instantaneously leads
to unpredictable delays before a dummy packet can enter the
pipeline. This limitation complicates the timely and seamless
integration of dummy packets for effective obfuscation. Prior
works [24, 28] have attempted to buffer dummy packets, but
they cause significant bandwidth overhead.

In IMap [24], control plane programs generate dummy
packets on the switch CPU, and recirculate them through the
pipeline to accumulate speed. This approach handles dummy
packet buffering by filling the pipeline entirely with dummy
packets, enabling the generation of probe packets as needed.
However, this approach introduces excessive dummy packets
that would reduce overall throughput, contradicting our design
goal of achieving a lightweight, line-rate defense model.

Another previous work, Ditto [28], conducts traffic mor-
phing on the programmable data plane at the cost of high
overhead. Ditto morphs traffic so that the sizes of pack-
ets sent out strictly adhere to a predefined pattern, e.g.,
[500,1000,1500,1500]. To achieve this, Ditto pads packets
when their sizes are smaller than the intended size. Conversely,
if the original packets are larger than the target size, Ditto
uses dummy packets to simulate smaller ones. Consequently,
a constant supply of dummy packets is required. As shown in
Figure. 9a, Ditto uses hierarchical queues to buffer dummy
packets, causing each packet to pass through the pipeline
twice. In the first round, queues are organized by packet size
(e.g., 500B). Real packets go to higher priority queues, while
dummy packets fill lower priority ones. In the second round,
packets are sorted by size and the traffic manager schedules
them out in a round-robin manner to match the fixed pattern.

Previous studies fail to design a lightweight method to
schedule dummy packets. In Minos, we design a priority-
based dummy packet scheduling structure which utilizes pri-
ority queues in the Traffic Manager to approximate instant
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Figure 10: Minos packet format.

dummy packet insertion with strict priority queues. As Fig-
ure. 9b shows, in the Minos Traffic Manager, a set of queues
for normal packets shares the same low priority, and a special
dummy queue owns the highest priority. Normal packets are
scheduled as Figure. 7 illustrates, and are sent in a round-robin
manner. The dummy queue, while owning the highest priority,
will be paused when it is not needed. Unfortunately, directly
pausing and resuming queues is not a supported feature in P4
switches [40]. In Minos, we modify the queue state with the
assistance of the control plane. Specifically, we send marker
packets to the control plane at regular intervals to report the
number of active flows. Then, according to the active flow
number, the control plane decides the proper cycle lengths for
periodically pausing and resuming queues. The control plane
program adjusts the dummy packet rate as follows:

Dummy_rate =
(

1
n
−d − i

)
∗ r

R
, (2)

where n is the number of rounds in the resume period, i is the
interval between resume and pause periods, r is the output
rate of the dummy queue, R is the current output rate of target
flow, and d is a constant representing the delay of instructions
between the control plane and the data plane. This approach
allows us to efficiently blend normal packets with dummy
packets at minimal cost, requiring only a single buffer queue
in the Traffic Manager.

6.2 Padding Module
Besides dummy packets, packet padding is also necessary
to hide packet length to defend against packet length at-
tacks, such as PINGPONG [44]. In Minos, we apply random
padding based on the average size of the original traffic. We
can set different padding sizes according to different defen-
sive needs, as discussed in Appendix A. The programmable
switch pads packets by adding packet headers after regular
packet headers. From the attackers’ perspective, these headers
are disguised as packet payload. As Figure. 10 shows, Minos
adds multiple headers of different sizes after the transport
layer header to realize dynamic padding. To de-obfuscate
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Figure 11: Minos flow table.

and remove these headers, the receiver Minos switch must be
informed of the exact padding length.

Therefore, the padding length is also encrypted with the
Proxy Module. A total of 64 bits will be encrypted and in-
serted after the transport layer header, including 32-bit source
IP, 8-bit padding length, 16-bit source port, and 8-bit random
padding. The padding size is calculated in the ingress pipeline
and encrypted along with the source IP while padding head-
ers are added in the egress pipeline. On the receiver switch,
padding size and source IP will be decrypted in the ingress
pipeline, so that extra headers can be stripped in the egress
pipeline. Overall, the Proxy Module will bring a static 8 Bytes
to each packet and the bandwidth overhead of the Padding
Module depends on defense settings.

7 Hardware Prototype Evaluation

We implement a hardware prototype of Minos on two Bare-
foot Tofino1 switches with 32 × 100 Gbps ports. We use a
traffic generator [4] to inject packets and record output traffic.

7.1 Implementation
The switch pipeline and flow tables are depicted in Figure. 11.
Specifically, packets entering the ingress pipeline will first
be hashed. Utilizing the inherent CRC32 hash function of
the Tofino ASIC, the five-tuple of each flow is hashed into a
unique flow identifier (ID). This flow ID subsequently serves
as the key for storing flow-level information within the regis-
ter. A Tofino1 switch offers 80 pages, each containing 1000
entries of 128b RAMs, which can be allocated for storing
the flow-level information. These hardware resources enable
Minos to manage over 10,000 concurrent flows. Neverthe-
less, as a gateway switch, the number of flows handled by
Minos may exceed this capacity. It is important to note that
Minos is designed to monitor only those flows that require
defense, rather than monitoring the information of every sin-
gle flow. Therefore, the register of Tofino does not affect the
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Figure 12: Throughput of Minos proxy module.

scalability of Minos. The dummy packets are injected from a
specific port and assigned to the high priority queue. We use
bfrt python scripts to pause and resume the dummy queue.
In the egress pipeline, Minos first performs packet padding
by adding packet headers. Then, in each encryption round,
the original 64-bit string is segmented into 16 4-bit strings,
and the match action table executes string-to-string mapping.
Owing to the limitation of the number of stages, the maximum
number of encryption rounds that can be performed is six.

Table 2 shows the utilization of each hardware resource.
The Minos Proxy Module consumes only 6.15% of VLIWs
and does not use any ALUs or TCAMs. Instead, it relies on
55.96% of SRAM to support match-action table-based en-
cryption. Notably, many functions commonly deployed on
P4 switches, such as Sketch [61] and Network Attack Detec-
tion [31], demand substantial ALU (>20%) or VLIW (≈ 10%)
resources but have low SRAM requirements. Therefore, Mi-
nos can coexist efficiently with these P4 programs. The receiv-
ing switch and the sending switch have the same hardware
resource consumption because the same P4 program and the
corresponding decryption flow tables need to be deployed.

7.2 Evaluation of the Proxy Module.

First, we evaluate the throughput of the Proxy Module. We
send TCP packets of 128B at different rates to examine if
Minos can perform line rate encryption and also evaluate
the performance of the Proxy Module using realistic flows.
The detailed construction of each dataset will be illustrated
in section 7.6. In Figure. 12, the X-axis reflects the input
rate of packets, and the Y-axis represents the actual output
rate of real traffic without extra bytes brought by the Minos
Proxy Module. The result proves that Minos is able to perform
line rate source IP encryption in the case of realistic datasets.
Minos reached an upper limit of 94 Gbps in the case of TCP
streams because the packets in TCP streams are relatively
small, which means that adding an 8-byte packet header has
a greater impact and thus reduces the throughput. As Minos
has a static 8-byte overhead per packet, the output ratio of
real traffic will be higher if larger packets are sent.

Table 2: Hardware Resource utilization.

Module name Stages VLIWs ALUs TCAM SRAM

Proxy module 10 6.15% 0% 0% 55.96%

Minos 12 7.81% 0% 0% 59.06%

Table 3: Arrival time of 1000th packet(s).

Origin Limited output rate Two flows Three flows Four flows

1 1.095861 1.102307 1.106605 1.108754

7.3 Evaluation of the Schedule Module.

We implement a simple scenario to evaluate the latency
brought by the Schedule Module. In each flow, we send 1000
packets per second and record the arrival time of the 1000th
packet. Then, we mix different numbers of flows to see if the
flow mixture will bring extra latency overhead. In Minos, we
record the current traffic rate and report to the control plane
periodically to update port speed limitation, usually 99% of
the current traffic rate. Otherwise, packets will not be cached
in queues and will be sent out directly in the First-in-First-out
manner. In this experiment, we set the output rate of the tested
port at 90% of the current traffic rate to magnify the delay
effect and evaluate the arrival time of 1000th packets of each
flow.

As Table 3 shows, adding flow numbers only incurs less
than 1% latency, which is insignificant compared to output
rate limiting. The results show that Minos can handle multiple
flows without incurring much delay. Therefore, we should
keep track of the current traffic rate and synchronize it with
the control plane frequently to reduce latency overhead.

7.4 Evaluation of the Dummy Module

Minos enables real time dummy packet insertion by pausing
and resuming priority queues. The control plane periodically
pauses and resumes queues by altering queue status according
to equation 2. We set the number of sending rounds n to 10
rounds per second and the output rate of normal queues to
1Gbps, and evaluate the impacts of resume interval i (X-Axis
in 13a) and dummy queue output rate r (X-Axis in 13b) on
dummy traffic rate.

When evaluating the impact of the interval between resume
and pause dummy queue on output rate, we set the default
output rate of the dummy queue to 0.1Gbps and alter interval
lengths. As shown in Figure. 13a, the output rate of dummy
packets increases as the interval increases and reaches its limit
of about 4.5%. This is because we repeat each sending round
10 times per second, and each round lasts for 0.1 second. In
this way, if we resume a queue for too long, the next resume
instruction will come as soon as the previous pause instruction
finishes, which means the queue will always be open.
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Table 4: Overhead of Minos

Flow type arrival time of 500,000th packet(s) Goodput rate(%)

Base 5 100%

One flow 5.02 95.3%

Multiple flows 5.12 99.2%
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Figure 13: Evaluation of the dummy module

In the evaluation of the impact of different dummy queue
rates on output rate, we set the interval between resume and
pause to 0.01 seconds. As shown in Figure. 13b, the output
rate of dummy packets and the queue output rate exhibit
an almost linear relationship, which means we can precisely
control the output rate of dummy packets through the dummy
queue output rate.

7.5 Overall Evaluation
At last, we evaluate Minos’s overall latency overhead and
bandwidth overhead of all three modules. We send packets of
1024B with 10,000 packets per second and evaluate Minos
in both one-flow scenario and multiple-flow scenario. In the
former case, we add 64B padding to each packet and insert
dummy packets with 0.01s interval and 0.5Gbps output rate.
When multiple flows are transmitting, we do not perform
traffic morphing because flow interleaving is sufficient to
defend against traffic analysis attacks.

Table 4 shows that Minos can perform with limited latency
and bandwidth overhead. In the one-flow scenario, Minos
reaches 95% goodput with little latency overhead. In the
multiple-flow scenario, the goodput rate is close to 100%
because we only add 8B of encryption header to each packet.
The arrival time of the 500,000th packet experiences a slight
delay of just around 2.4%. This delay is caused by the fact that
the output rate of the tested port is limited to enable round-
robin queues, as discussed in the evaluation of the Schedule
Module.

7.6 Comparison with SOTA work
We compare Minos with the state-of-the-art traffic morphing-
based defense on programmable switches, as presented in
Ditto [28]. Ditto is an end-to-end system that incorporates
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Figure 14: Evaluation results in comparison with Ditto.

two Tofino switches, responsible for obfuscation and de-
obfuscation respectively. To assess the performance of Minos
and Ditto across various network conditions, we choose three
datasets for our evaluation: Website Fingerprinting dataset
(WF) [37], IoT Fingerprinting dataset (IoT) [36], and a mix-
ture of both (Mix). We send background traffic ranging from 0
to 100Gbps with these datasets and conduct four experiments.
Besides, we configure Minos to perform a 64B padding to
each packet. Note that the Dummy Module is disabled be-
cause the evaluation involves transmitting multiple flows, and
dummy packet insertion are unnecessary.

First, we assess the overall throughput of Minos and Ditto.
Figure. 14a illustrates that Minos is capable of adapting to
diverse scenarios, whereas Ditto’s throughput is capped at
45Gbps when dealing with packets of more uniform sizes
in the Mixed dataset. In the TCP throughput experiments,
we send background traffic ranging from 0Gbps to 100Gbps
along with a 10Gbps TCP flow. Figure. 14b reveals that the
throughput of Ditto drops to near 0 when sending 80Gbps
background traffic, whereas Minos maintains more than
8Gbps throughput at 80Gbps and approximately 4Gbps at
100Gbps. Additionally, we examine the performance of Mi-
nos and Ditto in terms of the UDP packet loss rate and the
loading time of Google. The results show that Minos’s perfor-
mance is almost the same as the ideal case, with no significant
impact on applications. However, Ditto can cause packet loss
and website loading delays under high throughput conditions.
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8 Use Case: Website Fingerprinting

In this section, we implement Minos to defend against Website
Fingerprinting. We introduce our dataset, baseline attacks, and
defenses in section 8.1 and introduce how we adapt Minos to
defend WF attacks in section 8.2. At last, we evaluate Minos
against baseline attacks and defenses.

8.1 Evaluation Setup
We request the parsed dataset with all meta-data including
timestamps from [37]. The closed world dataset contains 900
websites, and 5,000 visits each. In our experiments, we select
300 websites and 100 traces each, 30,000 traces in total from
the closed world dataset. Each trace acts as a real traffic trace
and is sent to Minos according to its timestamp.

We evaluate Minos against four up-to-date Website Finger-
printing attacks: kNN [48], CUMUL [34], kFP [20], DF [42].
We use the simulation code provided by Gong et al. [18] and
keep the suggested parameters from the original papers, but
we change the maximum length of traces, which will be illus-
trated in section 8.3. As for defenses, we also adopt defenses
provided by [18]: Tamaraw [10] and WTF-PAD [9]. The for-
mer is a heavyweight obfuscation defense, and the latter is
a lightweight defense. We compare these two defenses to
Minos on overhead and effectiveness.

8.2 Defense Design
Recall that in Minos, traffic morphing-based defense against
Website Fingerprinting is only needed when we have a limited
number of flows transmitting in an encrypted tunnel. When
the number of transmitted flows is large, Minos performs
flow-interleaving to obfuscate the flows. When the number of
transmitted flows falls below a threshold, it supplements the
defense with traffic morphing-based Website Fingerprinting
defense. The exact threshold will be examined in section 8.3.
In this section, we describe our lightweight defense mecha-
nism.

Based on previous studies, the first few seconds of each
trace leak the most useful features for website fingerprint-
ing [20, 50]. [18] proposes FRONT, a defense that dedicates
most of its bandwidth budget to obfuscate the trace front.
FRONT samples a dynamic traffic window and sends packets
based on Rayleigh Distribution, and uses four parameters to
control this process. In Minos, we simplify this defense to
two parameters: front window W and obfuscating parameter
Ω. In the first W packets, we randomly insert dummy packets
with a given probability Ω, and in the rest of the traffic, no
dummy packets are inserted. To implement the above defense
mechanism, we can use the estimated overhead budget and
equation 2 to configure the dummy queue. To make this de-
fense as lightweight as possible, we choose not to pad or delay
packets and only insert dummy packets at a given possibility.
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Figure 15: Evaluation of flow mixture

8.3 Evaluation
First, we evaluate the relationship between the flow number
and the accuracy of attack models. The attacks are trained
with the original recommended parameters, except for flow
length. To avoid disturbance brought by flow aggregation, we
train models at two fixed lengths: 5000 and 10000, and cut off
input traffic traces to them. We apply two metrics to evaluate
each attack model: the accuracy metric and the TopN metric.
In both cases, we select the top N labels with the highest
probability, where N equals the number of mixed flows. The
accuracy metric evaluates if machine learning models return
any right label of the original flows, while the latter metric
evaluates how many labels are correct. Each correct label is
counted as 1/N correct answer.

Figure. 15 shows our results. Figure. 15a and 15b show
how metrics change with flow numbers. We can see that both
evaluation metrics quickly decrease as the flow number n
increases, and converge at n=5. When flow numbers are larger
than 5, both metrics are lower than 20%, which is effective
and able to defend against any attack models. As for the two
graphs evaluating the top 5000 models, although different
in exact numbers, the overall tendencies are the same, and
also coverage at n=4 or 5. To conclude, mixing up flows can
significantly obfuscate attackers with only a few flows. Based
on this experiment, we set the threshold of enabling dummy
packet insertion to 4, which decreases attackers’ accuracy to
lower than 20% without any extra overhead.

Then we evaluate our defense mechanism against other
defenses. Here, we set the obfuscating parameter Ω to 0.6 and
evaluate the defense effect of window sizes of 500 and 1000.
The bandwidth overhead of each defense is shown in Table 6.
Table 5 shows all evaluation results. We use accuracy, preci-
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Table 5: Defense performances

Defense Accuracy% Precision% F1

kNN CUMUL kFP DF kNN CUMUL kFP DF kNN CUMUL kFP DF

No defense 84.62 91.47 91.68 96.9 83.46 90.72 91.56 96.75 0.831 0.9091 0.9147 0.9676

Tamaraw 2.55 4.42 4.99 1.47 3.57 8.18 6.43 5.32 0.0223 0.049 0.0528 0.0206

WTF-PAD 20.38 44.42 57.28 81.06 18.43 44.14 56.11 78.86 0.1766 0.4305 0.5491 0.7857

Minos-500 5.63 39.82 31.73 7.06 7.96 55.68 38.96 6.7 0.05 0.4 0.28 0.05

Minos-1000 7.38 38.73 32.66 6.67 8.49 52.61 38.31 6.7 0.06 0.38 0.28 0.045

Table 6: Overhead of each defense mechanism

Defense Parameters Overhead

Latency(%) Bandwidth(%)

Tamaraw ρout = 0.04,ρin = 0.012,L = 50 14.23 143.82

WTF-PAD Normal rcv 0 60

Minos-500 Ω = 0.6, window=500 0 6

Minos-1000 Ω = 0.6, window=1000 0 12
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Figure 16: Throughput of each defense.

sion, and F1 score to evaluate defense performances. Without
any defense, each attack model can achieve around 90% ac-
curacy, and the DF model has the highest accuracy of 96.9%.
Tamaraw decreases the accuracy of each attack to single dig-
its at the cost of its high bandwidth overhead. On the other
hand, lightweight defense WTF-PAD fails to defend against
DF which still has more than 80% accuracy. In Minos, both
defenses achieve less than 40% accuracy and 60% precision.
With only one-third of the overhead of WTF-PAD, Minos
achieves a satisfying defense effect. Besides, as a practical,
lightweight defense mechanism, we are concerned about the
actual throughput with each defense. As Figure. 16 shows, the
previous defense schemes have lower output rates because of
their high bandwidth overhead, even the lightweight defense
model WTF-PAD reaches less than 80Gbps of real traffic. In
Minos, we can achieve about 95Gbps throughput.

To sum up, although our simple and intuitive Website Fin-
gerprinting defense cannot reduce the accuracy of Website

Fingerprinting attacks to random guess, we believe it’s ac-
ceptable because of its low overhead and high throughput. Be-
sides, in more usual scenarios, we have more than four flows
transmitting in one encrypted tunnel on the programmable
switch, which can naturally decrease the accuracy of attackers
to lower than 20% without any bandwidth overhead.

9 Conclusion

In this paper, we present Minos, a lightweight and scalable
defense against traffic analysis attacks using programmable
switches, providing both identity anonymity and traffic
anonymity. Minos performs line rate packet header encryp-
tion with the Proxy Module and performs lightweight dummy
packet insertion and packet padding with the Traffic Morphing
module. Besides, Minos applies a dynamic flow scheduling
algorithm to accommodate different network scenarios. Our
evaluation shows that Minos can perform line rate packet en-
cryption and flow scheduling at a low cost, and defend against
Website Fingerprinting attacks with little overhead.
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Figure 17: Accuracy of attacks against different defenses
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A Use case: IoT Fingerprinting

In this section, we adapt Minos to defend IoT Fingerprinting,
which utilizes different features from Website Fingerprint-
ing attacks. We apply public dataset from [36] and develop
our defense against the state-of-the-art HomeMole [14] and
ByteIoT [15]. All the experiments in this section are simu-
lated in software. We evaluate the accuracy of both model
against different padding sizes and dummy packet rates.

In Figure. 17a, we pad packets to different sizes to evaluate
the impact of packet padding. The result shows that an average
padding of 16 Bytes can reduce the accuracy of both attacks
to 20%, with 98% goodput rate. On the contrary, inserting
dummy packets is less effective. Figure. 17b shows the impact
of inserting dummy packets with different rates, from adding
1 dummy packet for every 4 real packets (0.25), to adding 5
dummy packet for each real packet (5). The result shows that
only with large amounts of dummy packets can we reduce the
accuracy of ByteIoT to less than 40%.

That is because IoT Fingerprinting attacks utilizes packet
length information with timing and directions, which makes
packet padding more effective than dummy packet insertion
based defense like [9]. For example, ByteIoT utilizes the fre-
quency distribution of packet lengths, so that a large number

of dummy packets has to be inserted to obfuscate the origi-
nal frequency distribution. The results shows that different
defense mechanisms are required to defense different traffic
analysis attacks, and the adaptability of Minos can satisfy this
need well.
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